Abstract:
Provided are a display substrate and a display device including the same. The display substrate includes: gate wiring; a first semiconductor pattern formed on the gate wiring and having a first energy bandgap; a second semiconductor pattern formed on the first semiconductor pattern and having a second energy bandgap which is greater than the first energy bandgap; data wiring formed on the first semiconductor pattern; and a pixel electrode electrically connected to the data wiring. Because the second energy bandgap is larger than the first energy bandgap, a quantum well is formed in the first semiconductor pattern, enhancing electron mobility therein.
Abstract:
A display substrate, a display device including the display substrate, and a method of fabricating the display substrate are provided. The display substrate includes a gate electrode; a gate-insulating layer disposed on the gate electrode; an oxide semiconductor pattern disposed on the gate-insulating layer; a source electrode disposed on the oxide semiconductor pattern; and a drain electrode disposed on the oxide semiconductor pattern and separated from the source electrode, wherein at least one portion of at least one of the gate-insulating layer or the oxide semiconductor pattern is plasma-processed.
Abstract:
A method of manufacturing a thin film transistor (“TFT”) substrate includes forming a first conductive pattern group including a gate electrode on a substrate, forming a gate insulating layer on the first conductive pattern group, forming a semiconductor layer and an ohmic contact layer on the gate insulating layer by patterning an amorphous silicon layer and an oxide semiconductor layer, forming a second conductive pattern group including a source electrode and a drain electrode on the ohmic contact layer by patterning a data metal layer, forming a protection layer including a contact hole on the second conductive pattern group, and forming a pixel electrode on the contact hole of the protection layer. The TFT substrate including the ohmic contact layer formed of an oxide semiconductor is further provided.
Abstract:
A display substrate includes gate lines and source lines, a passivation layer, a light shielding layer, an overcoat layer, and a column spacer. The passivation layer includes a first hole, partially exposing the metal layer. The passivation layer is formed on the substrate having the metal layer formed thereon. The light shielding layer overlaps the metal pattern and includes a positive photosensitive material on the passivation layer. The light shielding layer includes a second hole corresponding to the first hole. The overcoat layer includes a positive photosensitive material on the substrate having the light shielding layer thereon. The overcoat layer includes a third hole corresponding to the second hole. The column spacer is protruded from the overcoat layer corresponding to a portion of the light shielding layer. Accordingly, the number of the exposing mask used for manufacturing the display substrate may be reduced.