摘要:
A thin film transistor substrate includes an insulating plate; a gate electrode disposed on the insulating plate; a semiconductor layer comprising a metal oxide, wherein the metal oxide has oxygen defects of less than or equal to 3%, and wherein the metal oxide comprises about 0.01 mole/cm3 to about 0.3 mole/cm3 of a 3d transition metal; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and a source electrode and a drain electrode disposed on the semiconductor layer. Also described is a display substrate. The metal oxide has oxygen defects of less than or equal to 3%, and is doped with about 0.01 mole/cm3 to about 0.3 mole/cm3 of 3d transition metal. The metal oxide comprises indium oxide or titanium oxide. The 3d transition metal includes at least one 3d transition metal selected from the group consisting of chromium, cobalt, nickel, iron, manganese, and mixtures thereof.
摘要翻译:薄膜晶体管基板包括绝缘板; 设置在绝缘板上的栅电极; 包含金属氧化物的半导体层,其中所述金属氧化物具有小于或等于3%的氧缺陷,并且其中所述金属氧化物包含约0.01mol / cm 3至约0.3mol / cm 3的3d过渡金属; 设置在所述栅极电极和所述半导体层之间的栅极绝缘层; 以及设置在半导体层上的源电极和漏电极。 还描述了显示基板。 金属氧化物具有小于或等于3%的氧缺陷,并且掺杂有约0.01摩尔/ cm3至约0.3摩尔/ cm3的3d过渡金属。 金属氧化物包括氧化铟或二氧化钛。 3d过渡金属包括选自铬,钴,镍,铁,锰及其混合物中的至少一种3d过渡金属。
摘要:
A method of manufacturing a thin film transistor (“TFT”) substrate includes forming a first conductive pattern group including a gate electrode on a substrate, forming a gate insulating layer on the first conductive pattern group, forming a semiconductor layer and an ohmic contact layer on the gate insulating layer by patterning an amorphous silicon layer and an oxide semiconductor layer, forming a second conductive pattern group including a source electrode and a drain electrode on the ohmic contact layer by patterning a data metal layer, forming a protection layer including a contact hole on the second conductive pattern group, and forming a pixel electrode on the contact hole of the protection layer. The TFT substrate including the ohmic contact layer formed of an oxide semiconductor is further provided.
摘要:
A thin film transistor substrate includes an insulating plate; a gate electrode disposed on the insulating plate; a semiconductor layer comprising a metal oxide, wherein the metal oxide has oxygen defects of less than or equal to 3%, and wherein the metal oxide comprises about 0.01 mole/cm3 to about 0.3 mole/cm3 of a 3d transition metal; a gate insulating layer disposed between the gate electrode and the semiconductor layer; and a source electrode and a drain electrode disposed on the semiconductor layer. Also described is a display substrate. The metal oxide has oxygen defects of less than or equal to 3%, and is doped with about 0.01 mole/cm3 to about 0.3 mole/cm3 of 3d transition metal. The metal oxide comprises indium oxide or titanium oxide. The 3d transition metal includes at least one 3d transition metal selected from the group consisting of chromium, cobalt, nickel, iron, manganese, and mixtures thereof.
摘要翻译:薄膜晶体管基板包括绝缘板; 设置在绝缘板上的栅电极; 包含金属氧化物的半导体层,其中所述金属氧化物具有小于或等于3%的氧缺陷,并且其中所述金属氧化物包含约0.01mol / cm 3至约0.3mol / cm 3的3d过渡金属; 设置在所述栅极电极和所述半导体层之间的栅极绝缘层; 以及设置在半导体层上的源电极和漏电极。 还描述了显示基板。 金属氧化物具有小于或等于3%的氧缺陷,并且掺杂有约0.01摩尔/ cm3至约0.3摩尔/ cm3的3d过渡金属。 金属氧化物包括氧化铟或二氧化钛。 3d过渡金属包括选自铬,钴,镍,铁,锰及其混合物中的至少一种3d过渡金属。
摘要:
A method of manufacturing a thin film transistor (“TFT”) substrate includes forming a first conductive pattern group including a gate electrode on a substrate, forming a gate insulating layer on the first conductive pattern group, forming a semiconductor layer and an ohmic contact layer on the gate insulating layer by patterning an amorphous silicon layer and an oxide semiconductor layer, forming a second conductive pattern group including a source electrode and a drain electrode on the ohmic contact layer by patterning a data metal layer, forming a protection layer including a contact hole on the second conductive pattern group, and forming a pixel electrode on the contact hole of the protection layer. The TFT substrate including the ohmic contact layer formed of an oxide semiconductor is further provided.
摘要:
A display substrate includes; a substrate, a gate electrode arranged on the substrate, a semiconductor pattern arranged on the gate electrode, a source electrode arranged on the semiconductor pattern, a drain electrode arranged on the semiconductor pattern and spaced apart from the source electrode, an insulating layer arranged on, and substantially covering, the source electrode and the drain electrode to cover the source electrode and the drain electrode, a conductive layer pattern arranged on the insulating layer and overlapped aligned with the semiconductor pattern, a pixel electrode electrically connected to the drain electrode, and a storage electrode arranged on the substrate and overlapped overlapping with the pixel electrode, the storage electrode being electrically connected to the conductive layer pattern.
摘要:
A liquid crystal display includes; a first substrate, a gate line and a data line disposed on the first substrate, a color filter including protrusions and depressions aligned with the data line, the color filter being disposed on the data line, a pixel electrode disposed on the color filter, a second substrate facing the first substrate, a common electrode disposed on the second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate.
摘要:
A display substrate includes a switching transistor electrically connected to a gate line and a data line, the data line extending in a first direction substantially perpendicular to the gate line extending in a second direction, the switching transistor including a switching active pattern comprising amorphous silicon, a driving transistor electrically connected to a driving voltage line and the switching transistor, the driving voltage line extended in the first direction, the driving transistor including a driving active pattern comprising a metal oxide; and a light-emitting element electrically connected to the driving transistor.
摘要:
The present invention discloses a thin film transistor (TFT), a method for manufacturing the TFT, and a display substrate using the TFT that may prevent degradation of the characteristics of an oxide semiconductor contained in the TFT by blocking external light from entering a channel region of the oxide semiconductor. The TFT comprises an oxide semiconductor layer; a protective layer disposed on the oxide semiconductor layer and overlapping a channel region of the oxide semiconductor layer; an opaque layer disposed between the oxide semiconductor layer and the protective layer; a source electrode contacting a first side of the oxide semiconductor layer; a drain electrode contacting a second side of the oxide semiconductor layer and facing the source electrode with the channel region disposed between the drain electrode and the source electrode; a gate electrode to apply an electric field to the oxide semiconductor layer; and a gate insulating layer disposed between the gate electrode and the oxide semiconductor layer.
摘要:
Provided is a method for manufacturing a thin-film transistor substrate, in which the etching characteristics of an insulating film and a passivation layer are enhanced. The insulating film and the passivation layer are deposited by low temperature chemical vapor deposition. The method includes disposing a gate wiring on an insulating substrate; disposing a gate insulating film on the gate wiring; disposing a data wiring on the gate insulating film; disposing a passivation layer on the data wiring; and forming a contact hole by etching at least one of the gate insulating film and the passivation layer, wherein at least one of the gate insulating film and the passivation layer is disposed at a temperature of about 280° C. or below, and the forming of the contact hole is performed at a pressure of about 60 mT or below.
摘要:
A method of driving shutter glasses of a display system includes generating a display panel driving signal which drives a display panel of the display system, where the display panel displays a left image and a right image, generating a second three-dimensional (“3D”) synchronizing signal based on a first 3D synchronizing signal and the display panel driving signal, generating a third 3D synchronizing signal by adjusting an intensity of the second 3D synchronizing signal, generating a shutter control signal, which controls a left shutter and a right shutter of the shutter glasses, based on the third 3D synchronizing signal, and outputting the shutter control signal to the shutter glasses.