Abstract:
A dual-mode optical molecular imaging navigation apparatus with a switchable field of view, and an imaging method thereof, are provided in the embodiments of the disclosure, the apparatus including: a camera module configured to perform a color imaging and a fluorescence imaging; a switching module configured to switch between an open imaging mode and an endoscopic imaging mode as per imaging requirements; an open imaging module configured to perform observation and imaging with a large field of view; an endoscopic imaging module configured to perform observation and imaging with a deep field of view; a data processing module configured to provide a camera control software and image capturing, processing and display method; and a support module configured to support and connect the navigation apparatus.
Abstract:
The present invention provides a memory cell of a static random access memory based on resistance reinforcement, which includes a latch circuit and a bit selection circuit. The latch circuit consists of two PMOS transistors P1 and P2, two NMOS transistors N1 and N2, a first resistance-capacitance network and a second resistance-capacitance network. The bit selection circuit consists of NMOS transistors N5 and N6. The latch circuit form four storage nodes X1, X1B, X2, X2B. Compared to the conventional memory cell of a 6T structure, a resistance-capacitance network is added, so that without changing the original read operation circuit and without obviously increasing complexity, the memory cell is prevented from having single event upset at a cost of increasing a small amount of area, thus ensuring correctness of data.
Abstract:
The present invention relates to a robust coverage method for relay nodes in a double-layer structure wireless sensor network. The present invention is a local search based relay node 2-coverage deployment algorithm which, by means of reducing the global deployment problem to a local deployment problem, achieves optimal deployment whilst ensuring robustness. The method specifically comprises two steps: first 1-coverage and second 1-coverage, wherein the first 1-coverage comprises the three steps of construction of relay node candidate deployment locations, grouping of sensor nodes and local deployment of relay nodes, wherein the sensor nodes are grouped by means of a novel grouping method, and the complexity of the algorithm is reduced whilst ensuring optimal deployment. The second 1-coverage adjusts a threshold, selects from every group the sensor nodes covered by just one relay node, and uses a 1-coverage method to re-implement 1-coverage of the sensor nodes, thereby ensuring robustness, reducing the number of relay nodes deployed, and shortening the problem-saving time.
Abstract:
A method for parsing a question in a knowledge base includes: receiving a question entered by a user; performing phrase detection on the question to determine candidate phrases; mapping the candidate phrases to resource items in the knowledge base; further determining values of observed predicates and possible question parse spaces; performing uncertain inference on each proposition set in the possible question parse spaces according to the values of the observed predicates and values of hidden predicates, and calculating confidence; acquiring a combination of true propositions in a proposition set whose confidence satisfies a preset condition; generating a formal query statement according to the combination of true propositions.
Abstract:
The present invention relates to a technical field of traffic monitoring, and more particularly to a method for detecting traffic violation. The present invention includes firstly localizing vehicle salient parts through salient features including vehicle license numbers and vehicle rear lights, and representing a vehicle with the vehicle salient parts, then tracking the vehicle with a Kalman filter based on the vehicle salient parts, and finally detecting vehicle violation through moving trajectory analysis and setting violating detecting areas. The present invention solves vehicle violation detection problems in complex engineering application conditions such as illumination change and detection noise, and is suitable for city traffic management under complex conditions.
Abstract:
The invention discloses a wearable molecular imaging navigation system comprising: a multi-spectral light transceiver configured to transmit a multi-spectral light to a detected subject in a detection region and acquire an emitting light regarding the detected subject and acquire a reflecting light regarding the detected subject; an image processor configured to receive the reflecting light and the emitting light from the multi-spectral light transceiver, execute a three-dimensional reconstruction and fusion process on the reflecting light and the emitting light to obtain a fusion image; a wireless signal processor configured to enable a wireless communication; and a wearable device, configured to receive the fusion image from the image processor via the wireless signal processor, display the fusion image and control the multi-spectral light transceiver and the image processor based on instructions received.
Abstract:
A method of segmenting an object from an image includes receiving an input image including an object; generating an output image corresponding to the object from the input image using an image model; and extracting an object image from the output image.
Abstract:
A catheter or guide wire manipulating device for vascular intervention is provided, comprising a thumb component (3), a forefinger component (4), a driving component (1) and a catheter/guide wire support component (2); the thumb component comprises a roller (7) configured to advance or retreat the catheter/guide wire; the thumb component (3) is configured to drive the catheter/guide wire to rotate clockwise or counterclockwise through a combination motion of the components; the forefinger component (4) is configured to cooperate with the thumb component (3) to implement the rotation and the advancement of the catheter/guide wire by moving manually away from the thumb component, and returning by a pull force of a spring (23) after being released; the driving component (1) is configured to drive the thumb component (3) and the forefinger component (4); the catheter/guide wire support component (2) comprises a Y adapter fixation configured to install a Y adapter and an entry support configured to support and guide the catheter/guide wire into a mechanism.
Abstract:
The present disclosure belongs to the field of defect detections and discloses a method for constructing a defect detection model, a method for detecting a defect and a related apparatus, obtaining an initial training image, and adding a simulated anomaly to the initial training image to obtain a simulated anomaly training image; training a preset defect recognition model according to the initial training image and the simulated anomaly training image to obtain defect position information and mask prompt information; training a preset defect segmentation model according to the defect position information and the mask prompt information; and fusing the trained defect recognition model and defect segmentation model to obtain a defect detection model; the defect recognition model includes a teacher network branch, a student network branch and an autoencoder network branch; and an output difference between the teacher network branch and the student network branch is the defect position information.
Abstract:
Provided are a device, a system and a method for acquiring a force information based on a bionic structure, including: a force information acquisition layer and a magnetic field signal acquisition chip; wherein a permanent magnet is embedded in the force information acquisition layer; wherein the force information acquisition layer has an elastic structure configured to generate a deformation corresponding to a first force information of a force after being subjected to the force, so that the permanent magnet moves with the deformation to generate a magnetic field signal corresponding to the force information; wherein the magnetic field signal acquisition chip is arranged in parallel with the force information acquisition layer, and is configured to acquire the magnetic field signal and convert the magnetic field signal into an electrical signal.