Abstract:
A liquid crystal display including a first substrate and a second substrate facing each other, a first alignment layer disposed on the first substrate, the first alignment layer including a vertical photo-alignment material, a second alignment layer disposed on the second substrate, the second alignment layer including a vertical alignment material, and a liquid crystal layer disposed between the first substrate and the second substrate.
Abstract:
In a display apparatus, a first display substrate includes a common electrode to which a common voltage is applied. A second display substrate facing the first display substrate includes a first pixel electrode and a second pixel electrode. The first and second pixel electrodes formed in one pixel region are spaced apart from and insulated from each other. A first data voltage having a first polarity with reference to the common voltage is applied to the first pixel electrode, and a second data voltage having a second polarity different from the first polarity with reference to the common voltage is applied to the second pixel electrode. Thus, a fringe field is formed between the first and second display substrates and a lateral field is formed in the second display substrate, thereby improving a transmittance and a response speed of the display apparatus.
Abstract:
An output driver includes: a pull-up signal generation unit configured to control a pulse width of first data and output a pull-up pre-drive signal; a pull-down signal generation unit configured to control a pulse width of second data and output a pull-down pre-drive signal; a pull-up pre-driver unit configured to receive the pull-up pre-drive signal and generate a pull-up main drive signal; a pull-down pre-driver unit configured to receive the pull-down pre-drive signal and generate a pull-down main drive signal; a pull-up main driver unit configured to charge an output node according to the pull-up main drive signal; and a pull-down main driver unit configured to discharge the output node according to the pull-down main drive signal.
Abstract:
A liquid crystal display includes first and second thin film transistors, a pixel electrode including a first cutout and an inclination direction determining member and connected to the first thin film transistor, a direction controlling electrode connected to the second thin film transistor, a first storage electrode overlapping with the pixel electrode and the direction controlling electrode and applied with a first storage electrode signal having a first voltage, and second storage electrode overlapping with the direction controlling electrode to receive a second storage electrode signal having a second voltage that periodically changes.
Abstract:
A semiconductor device includes a swing level shifting unit configured to use a first power supply voltage as a power supply voltage, receive a CML clock swinging around a first voltage level, and shift a swing reference voltage level of the CML clock to a second voltage level lower than the first voltage level, and a CML clock transfer buffering unit configured to use a second power supply voltage as a power supply voltage and buffer the CML clock, which is transferred from the swing level shifting unit and swings around the second voltage level.
Abstract:
In a method of manufacturing a display panel, a first alignment member is formed on a first substrate. Liquid crystal is sealed between the first substrate and a second substrate opposite to the first substrate. Then, an electric field is applied to the liquid crystal to align the liquid crystal. Ultraviolet light is irradiated onto the first alignment member to form a second alignment member while applying the electric field to the liquid crystal.
Abstract:
A semiconductor integrated circuit includes an ODT signal generator that receives an ODT command signal, an ODT reset signal, and an ODT calibration end signal to generate an ODT control signal according to the phase of the ODT calibration end signal, and an ODT resistance adjusting unit that is to perform an on-die termination operation in response to the ODT control signal.
Abstract:
A semiconductor device includes a plurality of synchronization blocks configured to sequentially synchronize a plurality of input signals swinging in a complementary metal oxide semiconductor (CMOS) region with multi-phase clock signals to output a plurality of output signals swinging in a current mode logic (CML) region, a plurality of first swing region converting blocks configured to convert the plurality of output signals to a plurality of converted output signals swinging in the CMOS region, a serialization block configured to serialize a plurality of converted output signals, thereby outputting a serialized signal swinging in the CML region, and a second swing region converting block configured to convert the serialized signal to a serialized output signal swinging in the CMOS region.
Abstract:
A termination resistance circuit includes a control signal generator for generating a control signal whose logical value changes when a calibration code has a predetermined value, a plurality of parallel resistors which are respectively turned on/off in response to the calibration code, and a resistance value changing unit for changing the total resistance value of the termination resistance circuit in response to the control signal.
Abstract:
A photoalignment material includes an alignment polymer, a photoalignment additive including a compound represented by the following Chemical Formula 1 and an organic solvent. In Chemical Formula 1, R1 represents a cyclic compound. A and B independently represent a single bond or —(CnH2n)—. “n” represents an integer in a range of 1 to 12. Each —CH2— of A and/or B may be replaced with R3 represents an alkyl group having 1 to 12 carbon atoms, and each —CH2— of A and/or B may be replaced with —O—. R4 represents In Chemical Formula 1, each hydrogen atom excluding hydrogen atoms of R4 may be replaced with chlorine (Cl) or fluorine (F).Thus, an alignment layer having an orientation may be formed without an alignment polymer having a photoreactive portion, and the density of the alignment layer may be increased.