Abstract:
A thin film transistor display panel includes a plurality of pixels arranged in a matrix format, the plurality of pixels include thin film transistors, respectively, a plurality of first signal lines connected with the pixels, a plurality of second signal lines connected with the pixels, the plurality of second signal lines cross the first signal lines in an insulated manner, at least one of the second signal lines includes a cut portion, and an organic repairing member overlaps the cut portion
Abstract:
An organic light-emitting display device in which a pixel electrode is formed by extending from source and drain electrodes, a capacitor including a thin upper capacitor electrode formed below the pixel electrode and constituting a metal-insulator-metal (MIM) CAP structure, thereby simplifying manufacturing processes, increasing an aperture ratio, and improving a voltage design margin.
Abstract:
In an organic light-emitting display device and a method of manufacturing the same, the organic light-emitting display device comprises: a substrate in which a light-emitting region and a thin-film transistor (TFT) region are defined; and a plurality of insulating films formed on the substrate. A refractive index changes at only one of the interfaces between insulating films, which correspond to the light-emitting region and are formed between the substrate and a first electrode of an organic electroluminescence display element, and a refractive index changes at two or more of the interfaces between insulating films which correspond to the TFT region.
Abstract:
A gate driving apparatus includes a first stage which outputs a first gate output signal, and a second stage which outputs a second gate output signal. The first stage includes: a transistor which includes a gate electrode, a source electrode and a drain electrode; and a dummy transistor which includes a dummy gate electrode, a dummy source electrode and a dummy drain electrode. The gate electrode receives the second gate output signal, and the dummy source electrode is connected to the source electrode or the drain electrode of the transistor and prevents static electricity from flowing to the first stage.
Abstract:
A flat panel display device that can achieve uniformity between pixel circuits and improved image quality includes: a first pixel including a first light emitting device and not including a pixel circuit; and a second pixel spaced apart from the first pixel and including a first circuit that is electrically connected to the first light emitting device. Active layers of thin film transistors in the pixel circuits are formed of polycrystalline silicon crystallized from an amorphous silicon and patterned from an area of the polycrystalline silicon in which lasers of an excimer laser annealing process did not overlap.
Abstract:
A method fabricating multiple wiring metals in a semiconductor device. The method includes forming a lower wiring metal on a semiconductor substrate, forming an interlayer dielectric on the lower wiring metal, and selectively removing the interlayer dielectric to form a contact dielectric film, a body dielectric film and an opening between the contact and body dielectric films. The method also includes filling the opening with low-k material, forming a capping dielectric on the contact and body dielectric films and the low-k material, forming a contact hole passing through the capping dielectric and the contact dielectric film to be connected to the lower wiring metal, and forming an upper wiring metal electrically interconnected to the lower wiring metal through the contact hole.
Abstract:
A semiconductor device with a metal line and a method of forming the same. The method includes forming an insulation layer on a semiconductor substrate including a predetermined lower structure, forming a vertical hole and a horizontal hole by etching the insulation layer, forming a supporting part by filling the vertical holes and horizontal holes with a nitride layer, and forming a damascene metal line layer by forming a metal line on the insulation layer. The method also includes performing the forming process for the damascene metal line layer a plurality of times, removing the insulation layer, and forming a protective layer on the highest layer of the damascene metal line layer.
Abstract:
A method fabricating multiple wiring metals in a semiconductor device. The method includes forming a lower wiring metal on a semiconductor substrate, forming an interlayer dielectric on the lower wiring metal, and selectively removing the interlayer dielectric to form a contact dielectric film, a body dielectric film and an opening between the contact and body dielectric films. The method also includes filling the opening with low-k material, forming a capping dielectric on the contact and body dielectric films and the low-k material, forming a contact hole passing through the capping dielectric and the contact dielectric film to be connected to the lower wiring metal, and forming an upper wiring metal electrically interconnected to the lower wiring metal through the contact hole.
Abstract:
A display device includes a first insulation layer on a substrate, gate wires on the first insulation layer, the gate wires extending in a first direction, a second insulation layer on the gate wires, data wires on the second insulation layer, the data wires extending in a second direction crossing the first direction, pixels at intersection regions of gate wires and data wires, respectively, the pixels being connected to respective gate wires and data wires, and data leading diodes having an island form and connected to the data wires, the data leading diodes being configured to induce breakage of the first insulation layer when external static electricity passes through the data wires.
Abstract:
A method for testing an array for a pixel circuit of an organic light emitting diode display, which includes a first transistor that transmits a driving current corresponding to a data signal to an organic light emitting diode according to a scan signal and at least one capacitor, uses an array test device having a control device and a driver. The method includes performing a first irradiation of electron beams to an exposed portion of a first electrode of the at least one capacitor before manufacturing of the organic light emitting diode is completed, calibrating the control device of the array test device based on secondary electrons output by the at least one capacitor, performing a second irradiation of electron beams to an anode of the pixel circuit, and detecting whether the first transistor is normally operated based on an output amount of secondary electrons output by the anode.