Abstract:
A wind turbine for generating electrical energy may include a tower, a nacelle at the top of the tower, and a rotor coupled to a generator within the nacelle. The wind turbine further includes a cooler including a spoiler and at least one cooler panel projecting above a roof of the nacelle. A heliplatform includes a support structure extending from the nacelle and at least partially integrated with the cooler. The wind turbine may also include a crane coupled to the nacelle and configured to move between a first stowed position underneath the nacelle roof and a second operational position. In the operational position, the crane is selectively positionable over the heliplatform. A method of using the wind turbine and crane is also disclosed.
Abstract:
The present invention provides a method of installing a foundation for an offshore wind turbine and a template for use herein. In illustrative embodiments, the template is releasably anchored in a seafloor and the template is leveled before installing a pile. In a method according to some illustrative embodiments herein, a template may be provided, the template comprising at least one hollow guiding element for receiving the pile, at least one suction bucket, a frame body to which the at least one hollow guiding element and the at least one suction bucket are coupled, and controlling means configured to supply a pressure to the at least one suction bucket. The method may comprise disposing the template on the seafloor, supplying a negative pressure to the at least one suction bucket for driving the suction bucket in to the seafloor, and controlling the negative pressure supplied to the at least one suction bucket to adjusting a penetration depth of the at least one suction bucket so as to level the frame relative to the seafloor.
Abstract:
The present invention relates to methods and apparatus for removing or substantially reducing negative damping effects on a floating wind turbine. An operating point signal is received and a gain scheduling parameter is determined based on the received operating point signal. An input signal is then gain scheduled by the gain scheduling parameter and based on at least the gain scheduled input signal the negative damping effects on a floating wind turbine can be removed or substantially reduced.
Abstract:
Embodiments herein described provide systems and techniques for performing black start operations. For example, one embodiment provides a method for performing black start operations. The method generally includes operating a wind turbine in a wind park in a first mode to provide power to an alternating-current (AC) grid using a control system. The control system may include a reactive power control leg and an active power control leg. The method also includes switching operation of the wind turbine from the first mode to a second mode based on an indication to perform a black start of an electrical grid and by activating a controller with an integral action to thereby increase output power of the wind turbine, the controller being coupled between the reactive power control leg and the active power control leg, and providing power to the electrical grid while operating in the second mode.
Abstract:
The present invention relates to a preassembly system comprising a support arrangement and a plurality of tower structures each having a mean diameter, D, wherein said plurality of tower structures are placed vertically on the support arrangement during preassembly and/or storage, the support arrangement comprising a set of attachments means for each tower structure, said attachment means being configured for positioning said plurality of tower structures with a mutual distance, a, wherein the ratio a/D is below 2.3, such as below 2.2, such as below 2.1, such as below 2.0 in order to reduce loads on the plurality of tower structures due to Vortex shedding while being secured to the preassembly system. The present invention further relates an associated method and a sea going vessel for transporting a plurality of vertically oriented tower structures.
Abstract:
Embodiments herein describe operating a control system for a wind turbine in a first mode and second mode of operation. When in the first mode, the wind turbine provides power to a local AC grid. However, when in the second mode, the wind turbine provides power to a high-voltage direct current (HVDC) link. The control system includes a reactive power control leg and an active power control leg. To switch from the first mode to the second mode, the control system activates a PI controller coupled between the reactive and active power control legs which increases the output voltage of the wind turbine until the magnitude of the voltage activates a diode rectifier and permits the power outputted by the wind turbine to be transmitted along the HVDC link.
Abstract:
A method of controlling a wind turbine includes: accumulating a cumulative damage degree Du of each evaluation point of the wind turbine in a unit period over an entire evaluation period, to calculate a total cumulative damage degree Dt of the entire evaluation period at each evaluation point; comparing the Dt at each of the evaluation points with a first threshold value (P*Q) and comparing an increase rate dDt/dt of Dt at each evaluation point with a second threshold value to evaluate fatigue of a part to which each evaluation point belongs; and determining an operation mode based on an evaluation result into a normal operation mode or a low-load operation mode in which an output is suppressed compared with the normal operation mode.
Abstract:
Embodiments herein described provide systems and techniques for performing black start operations. For example, one embodiment provides a method for performing black start operations. The method generally includes operating a wind turbine in a wind park in a first mode to provide power to an alternating-current (AC) grid using a control system. The control system may include a reactive power control leg and an active power control leg. The method also includes switching operation of the wind turbine from the first mode to a second mode based on an indication to perform a black start of an electrical grid and by activating a controller with an integral action to thereby increase output power of the wind turbine, the controller being coupled between the reactive power control leg and the active power control leg, and providing power to the electrical grid while operating in the second mode.
Abstract:
The present invention relates to operation of a wind turbine using a power storage unit, such as a rechargeable battery, to power a group of power consuming units during grid loss. The wind turbine comprises a number of power consuming units being grouped into at least a first group and a second group, a first electrical converter for connecting the generator to the electrical grid, and a second electrical converter for connecting the electrical generator to the power storage unit. Upon detecting an occurrence of the grid loss, the generator is operated to ensure sufficient power of the power storage unit to operate the first group of power consuming units.
Abstract:
An assembly of two structural parts of a wind turbine wherein the structural parts are to be connected in a flange-to-flange connection, the assembly further comprising a wind turbine installation system for guiding two structural parts of a wind turbine during installation, the system comprising: a guide system for guiding the engagement of the first structural part to the second structural part, the guide system comprising: a guide post coupled to the first structural part; a guide receiver coupled to the second structural part and configured to receive the guide post therein; and a shock absorber arranged to dampen shock loads from the engagement of the guide post with the guide receiver.