摘要:
A method is provided for operating a device for the containment and controlled release or exposure of a chemical substance. The method includes (i) providing a device which includes a substrate having a plurality of reservoirs, at least one chemical substance stored in the reservoirs, a plurality of metal reservoir caps, each of which closes an opening of one of said reservoir caps, and power and electrode means for disintegrating each of said reservoir caps; and (ii) disintegrating at least one of said reservoir caps, using said power and electrode means, to expose or release the chemical substance, wherein said disintegration comprises using potentiostatic or galvanostatic control to a voltage potential at said at least one reservoir cap.
摘要:
A drug delivery device such as an oral dosage form (ODF) with a toxic or potent core encapsulated by a non-toxic region. The non-toxic region may be a region including multiple layers, coatings, shells, and combinations thereof, which provides protection to and isolation from the toxic or potent core. The drug in the toxic or potent core is incorporated into the dosage form via, for example, three-dimensional printing, as a solution, solubilization or suspension of solid particles in liquid, rather than by the more conventional handling and compressing of dry powder. This minimizes the likelihood of creating airborne particles of the toxic drug during manufacturing, hence controlling and minimizing the exposure of manufacturing personnel to the hazardous substance. Wet dispensing of the toxic or potent drug further provides greater bioavailability of the drug to the patient.
摘要:
A patch pump device generally includes at least one fluid source, a fluid communicator, and an electrochemical actuator. The fluid communicator is in fluid communication with the fluid source. The electrochemical actuator is operative to cause fluid to be delivered from the fluid source into the fluid communicator.
摘要:
100-800 nm ReBCO films with critical current density (Jc) values in excess of 1 MA/cm2 were fabricated from aqueous nitrate precursor solutions with additives. Additives such as polyethylene glycol (PEG) and sucrose were selected to suppress crystallization of barium nitrate. This produces higher concentration solutions resulting in thicker crack-free single layers. Additional water-soluble viscosity modifiers, such as polyvinyl alcohol (PVA) or cellulose-derivatives, were used to increase thickness and allow wetting of ceramic surfaces. Water vapor present at higher temperatures during heat-treatment damaged the films, while the role of water vapor at lower temperatures is still under investigation.
摘要翻译:由具有添加剂的硝酸盐前体溶液制备具有超过1MA / cm 2的临界电流密度(Jc)值的100-800nm ReBCO膜。 选择添加剂如聚乙二醇(PEG)和蔗糖以抑制硝酸钡的结晶。 这产生更高的浓度溶液,导致更厚的无裂纹单层。 使用额外的水溶性粘度调节剂,例如聚乙烯醇(PVA)或纤维素衍生物来增加厚度并允许陶瓷表面的润湿。 在热处理过程中,较高温度下的水蒸汽会损坏膜,而在较低温度下的水蒸汽作用仍在调查之中。
摘要:
A patch pump device generally includes at least one fluid source, a fluid communicator, and an electrochemical actuator. The fluid communicator is in fluid communication with the fluid source. The electrochemical actuator is operative to cause fluid to be delivered from the fluid source into the fluid communicator.
摘要:
Methods are provided for controlled reservoir opening, including the steps of (a) providing a biocompatible implantable device which comprises at least one substrate, a plurality of reservoirs in the substrate, reservoir caps each of which covers one of the reservoirs, and molecules sealed inside the reservoirs; and (b) selectively heating each reservoir cap in an amount effective to rupture the reservoir cap and open the reservoir. In another embodiment, the method steps include (a) implanting into a patient a biocompatible device which comprises at least one substrate, a plurality of reservoirs in the substrate, reservoir caps each of which covers one of the reservoirs, and molecules sealed inside the reservoirs; and (b) selectively heating each reservoir cap in an amount effective to rupture the reservoir cap and open the reservoir.
摘要:
A method is provided for monitoring the status of a medical device implanted in a patient. The method includes the steps of implanting in a patient a medical device which comprises (i) a substrate in which two or more reservoirs are located, with each covered by a reservoir cap, (ii) a drug or sensor located in the reservoir, (iii) a power source and actuation electronics for disintegrating or permeabilizing the reservoir cap, and (iv) a telemetry system; and then using said telemetry system to wirelessly transmit to a remote controller data about the condition of the power source and/or data about which reservoirs have been or have yet to be activated to release the drug therefrom or to expose the sensor therein.
摘要:
Devices and methods are provided for wirelessly powering and/or communicating with implanted medical devices used for the controlled exposure and release of reservoir contents, such as drugs or sensors. The device may include a substrate having a plurality of reservoirs containing reservoir contents for release or exposure; and a rechargeable or on-demand power source comprising a local component which can wirelessly receive power from a remote transmitter wherein the received power can be used, directly or following transduction, to activate the release or exposure of the reservoir contents.
摘要:
Microchip devices and methods of manufacture thereof are provided to increase the uniformity and reliability of active exposure and release of microchip reservoir contents. In one embodiment, the microchip device for the controlled release or exposure of molecules or secondary devices comprises: (1) a substrate having a plurality of reservoirs; (2) reservoir contents comprising molecules, a secondary device, or both, located in the reservoirs; (3) reservoir caps positioned on the reservoirs over the reservoir contents; (4) electrical activation means for disintegrating the reservoir cap to initiate exposure or release of the reservoir contents in selected reservoirs; and (5) a current distribution means, a stress induction means, or both, operably engaged with or integrated into the reservoir cap, to enhance reservoir cap disintegration.