Abstract:
An integrated optical pickup and a manufacturing method thereof, and an optical information storage system including the pickup. The integrated optical pickup includes a light source; a main photo-detector, which receives light emitted from the light source and reflected from an optical information storage medium; a light-collecting and optical path separating member, which focuses light emitted from the light source on the optical information storage medium and separates an optical path of light incident on the optical information storage medium from an optical path of light reflected from the optical information storage medium; and an optical bench, which is coupled to the light-collecting and optical path separating member, an optical path being formed between the light source and the main photo-detector, and the light-collecting and optical path separating member, and the optical bench and the light-collecting and optical path separating member being respectively formed on a wafer and then obtained by being separated into a plurality of assemblies.
Abstract:
Provided is a recording medium suitable for use in magnetic transfer of a servo pattern onto a magnetic recording medium. The recording medium includes a substrate including a plurality of servo regions and a plurality of data regions, and a magnetic layer formed on each of the servo regions and patterned in the shape of a servo pattern to be patterned on a magnetic recording medium, wherein the servo regions protrude relative to the data regions.
Abstract:
Image sensors include three-dimensional (3D) color image sensors having an array of sensor pixels therein. A 3-D color image sensor may include a 3-D image sensor pixel having a plurality of color sensors and a depth sensor therein. The plurality of color sensors may include red, green and blue sensors extending adjacent the depth sensor. A rejection filter is also provided. This rejection filter, which extends opposite a light receiving surface of the 3-D image sensor pixel, is configured to be selectively transparent to visible and near-infrared light relative to far-infrared light. The depth sensor may also include an infrared filter that is selectively transparent to near-infrared light having wavelengths greater than about 700 nm relative to visible light.
Abstract:
Example embodiments relate to a three-dimensional image sensor including a color pixel array on a substrate, a distance pixel array on the substrate, an RGB filter on the color pixel array and configured to allow visible light having a first wavelength to pass, a near infrared light filter on the distance pixel array and configured to allow near infrared light having a second wavelength to pass, and a stack type single band filter on the RGB filter and the near infrared light filter and configured to allow light having a third wavelength between the first wavelength and the second wavelength to pass. According to example embodiments, a semiconductor device may include a color pixel array on a substrate; a distance pixel array on the substrate; a light-inducing member on the color pixel array and the distance pixel array; a RGB filter on the light-inducing member and configured to allow visible light to pass; a near infrared light filter on the light-inducing member and configured to allow near infrared light to pass; and a plurality of lenses on the RGB filter and the near infrared light filter.
Abstract:
Provided are a master recording medium and a method of manufacturing the master recording medium. The master recording medium includes: a plate; and a magnetic layer which is formed on the plate for magnetically transferring of a servo pattern that is to be formed on a magnetic recording medium. The method of manufacturing a master recording medium includes: engraving a polymer layer by nano imprinting to form an engraved pattern corresponding to a servo pattern to be formed on a magnetic recording medium; forming a magnetic layer which fills in the engraved pattern of the polymer layer; forming a back plate layer on the magnetic layer; and performing processing to expose the servo pattern on a surface of the magnetic layer that is opposite a surface of the magnetic layer on which the back plate layer is formed.
Abstract:
A magnetic thin film structure, a magnetic recording medium including the same, and a method of manufacturing the magnetic recording medium are provided. The magnetic recording medium includes an under layer formed of a transition metal nitride on a substrate and a plurality of magnetic dots, which are unit recording regions, formed of a magnetic material having magnetic anisotropy energy between 106 erg/cc and 108 erg/cc.
Abstract:
A method of nano-patterning, a method of manufacturing a nano-imprinting master and a discrete track magnetic recording medium are all provided. The method of nano-patterning includes (a) sequentially forming on a substrate an etching object material layer, a photoresist layer, and a metal layer patterned to a first pattern having a structure in which line patterns are repeatedly arranged with a predetermined interval; (b) irradiating light onto a surface of the metal layer to excite surface plasmon so that the photoresist layer is exposed to a second pattern by the surface plasmon; (c) removing the metal layer and developing the photoresist layer; and (d) etching the etching object material layer using the photoresist layer patterned to the second pattern as a mask.
Abstract:
Provided are a method of manufacturing a magnetic layer, a patterned magnetic recording medium including magnetic layers formed using the method, and a method of manufacturing the patterned magnetic recording medium. The method of manufacturing the magnetic layers includes: forming a template provided with an opening; forming a seed layer on a bottom of the opening; and inserting a magnetic material onto the seed layer to form a magnetic layer. The patterned magnetic recording medium includes a lower layer formed on a substrate; a template formed on the lower layer and including a plurality of holes exposing the lower layer; seed layers covering the lower layer exposed through the holes; and magnetic layers formed on the seed layers to fill the holes.
Abstract:
A heat assisted magnetic recording (HAMR) head is provided. The HAMR head is mounted in a slider having an ABS that faces a recording medium and illuminates light on the local area of the recording medium, and includes a recording unit that performs recording and a near field light emitter that illuminates near field light onto the local area of the recording medium, the near field light emitter including a light source, a waveguide, and a near field light emission (NFE) pole located between the recording unit and the waveguide, and which generates near field light that is illuminated on the recording medium using light transmitted through the waveguide.
Abstract:
A light delivery module, a method of fabricating the same, a heat-assisted magnetic recording head using the light delivery module are provided. The light delivery module delivers light emitted from a light source. The light delivery module includes an optical waveguide having an inclined plane of an angle Φ with respect to an incident light axis to deliver an incident light, and a nano aperture changing an energy distribution of the light delivered through the inclined plane to generate an enhanced near-field. The heat-assisted magnetic recording head is mounted on one end of a slider with an air bearing surface to perform a recording operation on a recording medium. The heat-assisted magnetic recording head includes a magnetic path forming unit forming a magnetic field for recording, a light source emitting light for heating a predetermined region of a recording surface of the recording medium, and the light delivery module.