Abstract:
An inside wall surface of a cap covering the end portion of a header tank is formed into a spherical shape, and a connecting portion between the inside wall surface of the cap and a inside wall surface of a tank portion is separated away from a connecting portion between the inside wall surface of the tank portion and an outside wall surface of a tube. Thus, the brazing material is suctioned into both connecting portions (both gaps) sufficiently, and both connecting portions are brazed firmly.
Abstract:
A heat exchanger has a plurality of tubes and tank portions formed by a plurality of first thin plates laminated and connected to each other, and a plurality of covering members formed by a plurality of second thin plates laminated and connected to each other. The covering members cover the tubes and the tank portions while forming a plurality of openings therebetween. Each of the first thin plates has a communication hole so that each of the openings communicates with each other. An electromagnetic valve is disposed in the heat exchanger to control a communication between the opening and an outer space of the heat exchanger. Thus, when any one of the tubes and the tank portions cracks and leaks refrigerant flowing therethrough, refrigerant is collected into the openings and is accurately rapidly discharged to the outer space by an opening operation of the electromagnetic valve.
Abstract:
A rare earth iron permanent magnet including at least one rare earth element, iron and boron as primary ingredients. The magnet can have an average grain diameter of less than or equal to about 150 .mu.m and a carbon content of less than or equal to about 400 ppm and a oxygen content of less than or equal to about 1000 ppm. The permanent magnet is prepared by casting a molten alloy. In one embodiment, the cast body is heat treated at a temperature of greater than or equal to about 250.degree. C. Alternatively, the material can be cast and hot worked at a temperature of greater than or equal to about 500.degree. C. Finally, the material can be cast, hot worked at a temperature of greater than or equal to about 500.degree. C. and then heat treated at a temperature of greater than or equal to about 250.degree. C. The magnets provided in accordance with the invention are relatively inexpensive to produce an have excellent performance characteristics.
Abstract:
This invention relates to a permanent magnet having magnetic anisotropy given by means of a newly developed mechanical alignment and a manufacturing method thereof, and more particularly to a magnet comprising R (at least one rare-earth element selected from tile group consisting of Pr, Nd, Dy, Ce, La, Y and Tb), M (at least one transition metal selected from the group consisting of Fe, Co, Cu, Ag, Au, Ni and Zr) and X (at least one IIIb element of the periodic table selected from the group consisting of B, Ga and Al) and manufacturing method thereof, said alloy of R-M-X series, which composes basic component, are melted and cast, then cast ingot is hot-worked at the temperature above 500.degree. C. to remove or eliminate liquid phase of non-magnetic R-rich phase to concentrate magnetic phase, and to give magnetic anisotropy by means of mechanical alignment. It can provide magnet with excellent property comparable to that of the magnet provided by the conventional manufacturing method while applying cast hot-working heat treatment process which does not includes powdering process.
Abstract:
A magnetic recording medium comprising an undercoat layer formed on one side or both sides of a non-magnetic substrate and a magnetic layer formed on the undercoat layer, characterized in that the undercoat layer contains powders having an average particle size of 0.5 to 5.0 .mu.m and an aspect ratio of 5.0 or more and a magnetic recording medium comprising a magnetic layer formed on a non-magnetic substrate, characterized in that the non-magnetic substrate contains powders having an average particle size of 0.5 to 5.0 .mu.m and an aspect ratio of 5.0 or more.
Abstract:
A variable attenuator has a plurality of attenuation resistor units, a plurality of switching units, and a plurality of impedance compensation resistor units. The attenuation resistor units are connected in series for attenuating an input signal, and the switching units are provided for the attenuation resistor units. One of the switching units are selected in accordance with a digital control signal supplied from an external source. Each of the impedance compensation resistor units is connected in series with the respective switching units to compensate an output impedance to a specific value regardless of the state of the switching units. Therefore, the variable attenuator of the present invention can correctly control the level of an analog signal by a digital signal.
Abstract:
A classification accuracy setting device and a method therefor of a coin selector used in an automatic vending machine, a money exchanger and other various automatic service apparatuses. In accordance with the operation of the device, a reed switch is turned on to set a classification accuracy selection mode, the number of coins of each denomination received in this mode is counted, and reference values of classification accuracies which have been stored in a memory are rewritten in response to the counted number.
Abstract:
An anisotropic rare earth-iron series permanent magnet having a columnar macrostructure is provided. The magnet is prepared by melting and casting an R-Fe-B alloy in order to make a magnet having a columnar macrostructure and heat treating the cast alloy at a temperature of greater than or equal to about 250.degree. C. in order to magnetically harden the magnet. Alternatively, the cast alloy can be hot processed at a temperature greater than or equal to about 500.degree. C. in order to align the axes of the crystal grains in a specific direction and make the magnet anisotropic. In another embodiment, the cast alloy can be hot processed at a temperature of greater than or equal to about 500.degree. C. and then heat treated at a temperature of greater than or equal to about 250.degree. C.
Abstract:
Deposited coins are stored in a coin storing device and change is paid out of coins storred in this storing device. For detecting an amount of coins going in and out of the coin storing device, a going-in-and-out detector is provided. For setting an initial amount P of stored coins in the coin storing device, an initial stored coin amount setter is provided. In an operation device, an operation for obtaining difference N between a current amount S of stored coins and the initial amount P in accordance with the output of the going-in-and-out detector and the initial amount P. When the amount of stored coins in the coin storing device is to coincide with the initial amount P (e.g., when an inventory operation is to be performed), a command device commands this. In response to this command, a payout control device performs, if the current amount S is larger than the initial amount P, control for paying out the number of coins corresponding to the difference N. Thus, if the current amount S of stored coins is larger than the initial amount P, a superfluous coin is automatically paid out so that the amount of stored coins is caused to coincide with the initial amount P. Conversely, if the current amount S of stored coins in the coin storing device is smaller than the initial amount P, a display control device displays that the amount of stored coins is short. The operator may additionally deposit deficient coins upon finding the deficiency whereupon the amount of stored coins is caused to coincide with a predetermined initial stored coin amount P.
Abstract:
The coin separator includes a first coin passage having an inclined rail on which two coins having larger and smaller diameters are transferred. A first inclined wall is formed sidewise of the inclined rail. An upper end of the first inclined wall is inclined at a predetermined angle toward the outside of the first coin passage and the height of the first inclined wall is generally larger than the diameter of a large diameter coin. A second inclined wall is formed upstream of the first inclined wall. An upper end of the second inclined wall is inclined at a predetermined angle toward the outside of the first coined passage. The predetermined angle of the second inclined wall is greater than that of the first inclined wall and the height of the second inclined wall is generally larger than the diameter of a small diameter coin. A wall projects from a position located opposite to the second inclined wall to the inside of the first coin passage. A second coin passage is in communication with the downstream end of the inclined rail and a third coin passage is provided downward of the projecting wall. A projection is provided on the inclined surface of the second inclined wall located opposite to the projecting wall and projecting toward the inside of the first coin passage with a height decreasing in the downstream direction of the second inclined wall to effect large and small diameter coin separation.