Abstract:
The present invention relates generally to compositions and methods for producing lactic acid using a lactic acid producing microorganism. More specifically, the present invention relates to methods for producing lactic acid with high yield, high concentration and high volumetric productivity through biological fermentation by Enterococcus faecalis, or recombinant microorganisms transformed to produce lactate dehydrogenase using the lactate dehydrogenase-encoding genes derived from E. faecalis.
Abstract:
The invention novel compounds, pharmaceutical compositions and methods useful for preventing or treating cancer in animals and humans. Also, the invention provides novel prodrugs useful for reducing tumor size, and inhibiting the growth of cancers, inhibiting tumor cell growth and tumor cell proliferation, and promoting apoptosis of tumor cells. When used in combination with chemoradiation thereapy, the novel compounds, compositions and prodrugs provided herein can improve the effectiveness of chemoradiation therapy. The novel compounds, compositions and prodrugs of the invention inhibit PDK and LDH in unique and effective ways.
Abstract:
The invention provides the discovery and characterization of a novel arterivirus protein (nsp2TF), whose expression is dependent on −2 ribosomal frameshifting at a site located in the nsp2 coding region. The coding region for the unique TF domain of nsp2TF overlaps the part of ORF1a that encodes the transmembrane region of nsp2 in arteriviruses, including PRRSV, LDV and SHFV. Mutations affecting the expression of nsp2TF impair PRRSV replication and result in a smaller plaque phenotype. Provided herein are arteriviruses that display reduced translation of nsp2TF and/or altered translation of one or more downstream products, arteriviruses in which nsp2TF function is reduced and/or absent, and vaccines comprising said arteriviruses. Also provided herein are diagnostic methods, methods for identifying compounds that inhibit −2 frameshifting, and gene expression tools for eukaryotic systems utilizing −2 frameshifting.
Abstract:
A method for determining the efficacy of a vaccine comprising: providing serum from an animal inoculated with a vaccine; providing a plurality of antigen-linked nanoparticles; contacting the serum with the plurality of antigen linked nanoparticles; contacting the serum and the plurality of antigen linked nanoparticles with a plurality of Fc receptor-expressing cells; measuring amount antigen-linked nanoparticle uptake by of the Fc receptor-expressing cells; determining efficacy of the vaccine by comparing the level of antigen-linked nanoparticle uptake to a baseline level of uptake wherein a greater nanoparticle uptake compared to the baseline level of uptake is indicative of greater vaccine efficacy.
Abstract:
The present invention relates generally to compositions and methods for producing lactic acid using a lactic acid producing microorganism. More specifically, the present invention relates to methods for producing lactic acid with high yield, high concentration and high volumetric productivity through biological fermentation by Enterococcus faecalis, or recombinant microorganisms transformed to produce lactate dehydrogenase using the lactate dehydrogenase-encoding genes derived from E. faecalis.
Abstract:
Disclosed herein are dentifrices with low pH-triggered release of pharmacons and other materials to more effectively adhere to the tooth and associated surfaces. The various compositions and methods include novel dental compositions that release materials such as fluoride ions, eugenol, pharmacons or other medicinal payloads under physiologically low pH to extend the material lifespan on the teeth and gums of the user.
Abstract:
Articles, such as implants and medical devices, treated with a hyaluronic acid binding peptide are provided. Articles are coated with a surface functionalizing agent which bind to and immobilize the hyaluronic acid binding peptide. Methods of improving and/or reducing foreign body reaction to an article are also provided, as are methods of decreasing inflammation, promoting wound healing, and treating dermal conditions.
Abstract:
Disclosed herein is a conductive coating composition that includes a functionalized carbon nanomaterial and/or boron nanomaterial and a fluid component. The nanomaterial and fluid component forms hydrogen bond network in the disclosed composition. Because of the formed hydrogen bonds, the disclosed coating exhibits enhanced thermal or electrical conductivity. Also disclosed is a method to improve thermal or electrical conductivity of an existing coating composition.
Abstract:
The present disclosure relates to mixed ionically and electronically conducting solid-state phases for their application in electrochemical devices, such as lithium-metal or lithium ion batteries. The solid-state mixed phase comprises of active cathode and carbon-based structures functionalized by a heteropolyacid (HPA) or a metal salt of a heteropolyacid (Me-HPA) to form a solid-state architecture with incorporated ceramic or glass-ceramic electrolyte for enhanced ionic and electronic conductivity pathways. Combining the solid-state phase components in melted solid-state electrolyte results in perfect distribution, improved adhesion between particles, and improved characteristics of the electrochemical device, such as high charge rates, long-term performance, and broad voltage window.
Abstract:
A platform for culturing modular, biomimetic compositions such as tissues, cartilage, bone, synovial membrane, is accomplished through the use of a 3D printed platform with cell well, well plate frame with culture and analysis modules, coverglass bottoms for imaging, and cross-talk flow to connect tissue modules for paracrine signaling. Human chondrocytes can be generated and kept in a cell back and expanded to zonal models, osteoarthritis progression models. The use of titanium oxide nanotubes and can produce bone marrow stem cells differentiated toward osteoblasts. The synovial membrane can be modeled by an electrospun mesh, macrophages with an inducible phenotype (quiescent vs. wound repair vs. inflammatory).