Abstract:
It is disclosed herein that treatment of a subject with an mTOR inhibitor enhances antigen-specific T cell immune responses. Thus, provided herein is a method of enhancing an antigen-specific T cell response in a subject by administering to the subject a therapeutically effective amount of an mTOR inhibitor. The antigen can be any antigen, such as an antigen from a pathogen or a vaccine, or a tumor antigen. In some embodiments, the method further comprises administering to the subject a vaccine, such as a virus vaccine or a cancer vaccine. The mTOR inhibitor can be administered either before or after vaccination to enhance the quantity and quality of the T cell immune response and immunological memory. In some examples, the mTOR inhibitor is rapamycin or a rapamycin analog.
Abstract:
The present invention is directed to a recombinant fusion antigen gene, a recombinant fusion antigen protein and a subunit vaccine composition having the same against infection of porcine reproductive and respiratory syndrome virus (PRRSV). A recombinant fusion antigen gene, which encodes glycoprotein GP5 with truncated N′-terminal decoy epitope, a linker sequence and membrane protein M, followed by codon optimization, is expressed by a baculovirus expression system in vitro, thereby enhancing a yield of the recombinant fusion antigen protein. The recombinant fusion antigen protein can be applied in a subunit vaccine composition, for providing vaccinated animals with better protection ability without the risks of virulent spread and virulent recovery.
Abstract:
The present invention belongs to the field of animal health and relates to a nucleic acid sequence which comprises the genome of an infectious genotype I (EU) PRRS virus clone useful for studying Porcine Reproductive and Respiratory Syndrome (PRRS), a viral disease affecting swine, and in the development of vaccines, therapeutics and diagnostics for the prophylaxis, treatment and diagnosis of PRRS.
Abstract:
The present invention belongs to the field of animal health and relates to a nucleic acid sequence which comprises the genome of an infectious genotype I (EU) PRRS virus clone useful for studying Porcine Reproductive and Respiratory Syndrome (PRRS), a viral disease affecting swine, and in the development of vaccines, therapeutics and diagnostics for the prophylaxis, treatment and diagnosis of PRRS.
Abstract:
Viruses having an impaired ability to deISGylate ISG15 conjugates, in particular, viral mutants comprising a mutation in the viral genome that reduces or eliminates the ability of the viral OTU domain-containing protein encoded by the viral genome to deISGylate ISG15 conjugates and/or deubiquitinate ubiquitinated proteins and/or deNeddylate Neddylated proteins are disclosed. Such viral mutants may be used in the formulation of immunogenic compositions for inducing an immune response and preventing, managing and/or treating a viral infection. Also disclosed are methods for identifying anti-viral compounds, in particular, methods of identifying compounds that reduce or inhibit the deISGylation activity and/or deubiquitination and/or deNeddylation activity of a viral OTU domain-containing protein. The compounds identified using such methods may be used as antiviral agents for the prevention, treatment and/or management of viral infections.
Abstract:
The invention provides isolated polynucleotide molecules, plasmids, viral vectors, and transfected host cells that comprise a DNA molecule encoding an infectious RNA molecule that encode a PRRS (Porcine Reproductive and Respiratory Syndrome) virus, and further provides the PRRS virus encoded thereby. The invention also provides isolated infectious RNA molecules encoding PRRS virus.
Abstract:
The present invention relates to the field of attenuated live viruses useful as vaccine or medicament for preventing or treating Porcine Reproductive and Respiratory Syndrome (PRRS) in swine, and is based on the surprising finding of a PRRS virus which is able to induce the interferon type I response of a cell infected by said virus. In one embodiment, the PRRS virus according to the invention is a PRRS virus mutant comprising, in comparison with the genome of a wild type strain, a mutation in the gene encoding the non structural protein 1 (nsp1) of said virus.
Abstract:
Substantially avirulent forms of atypical porcine reproductive and respiratory syndrome (PRRS) virus and corresponding vaccines are provided which result from cell culture passaging of virulent forms of PRRS. The resultant avirulent atypical PRRS virus is useful as a vaccine in that PRRS specific antibody response is elicited by inoculation of host animals, thereby conferring effective immunity against both previously known strains of PRRS virus and newly isolated atypical PRRS virus strains. The preferred passaging technique ensures that the virus remains in a logarithmic growth phase substantially throughout the process, which minimizes the time required to achieve attenuation. The present invention also provides diagnostic testing methods which can differentiate between animals infected with field strains and attenuated strains of PRRSV.
Abstract:
The invention provides isolated polynucleotide molecules that comprise a DNA sequence encoding an infectious RNA sequence encoding a genetically-modified North American PRRS virus, wherein the polynucleotide molecule lacks at least one detectable antigenic epitope of North American PRRS virus. The invention also provides vaccines comprising genetically modified North American PRRS virus, RNA molecules, plasmids and viral vectors comprising the isolated polynucleotide molecules. Also provided are isolated polynucleotide molecules further comprising at least one nucleotide sequence that encodes a detectable heterologous antigenic epitope, and vaccines comprising North American PRRS virus, RNA molecules, plasmids and viral vectors comprising such isolated polynucleotide molecules.
Abstract:
This document provides methods and materials related to assessing organisms for the presence or absence of anti-virus antibodies. For example, this document provides methods and materials that can be used to determine whether or not an organism (e.g., a member of a swine species such as a pig) contains anti-PRRS virus antibodies. In other embodiments, this document provides methods and materials that can be used to determine if a particular organism received a vaccine version of a virus, was infected with a naturally-occurring version of the virus, or is naive with respect to the virus.