Abstract:
Disclosed herein are a graphene hybrid material and a method for preparing the graphene hybrid material, the graphene hybrid material comprising: a matrix having lattice planes disconnected on a surface thereof; and layers of graphene which are epitaxially grown along the lattice planes disconnected on the surface of the matrix such that the layers of graphene are oriented perpendicularly to the matrix, and which are spaced apart from each other and layered on the matrix in the same shape. The graphene hybrid material can be usefully used in the fields of next-generation semiconductor devices, biosensors, electrochemical electrodes and the like.
Abstract:
The present invention relates to amino-functionalized mesoporous silica. The present invention provides amino-functionalized mesoporous silica having hexagonal platelet morphology with short channels perpendicular to the platelet. The lengths of the channels are preferably 10˜1000 nm. The present invention also provides a method for preparing amino-functionalized mesoporous silica having hexagonal platelet morphology comprising a series of steps in sequence which are reactive gel preparation before subjected to the microwave, microwave heating for co-condensation reaction and crystallization, and solvent extraction for surfactant removal. The direct co-condensation approach with microwave heating and adoption of sodium metasilicate as silica source can give great advantage in the view of economy and environment.
Abstract:
A method for forming an isolation structure of a flash memory device includes providing a substrate structure where a tunnel insulating layer, a conductive layer, and a padding layer are formed, etching the padding layer, the conductive layer, the tunnel insulating layer and the substrate to form a trench, forming a first insulating layer over the substrate structure and filling in a portion of the trench, forming a second insulating layer over the substrate structure, forming a third insulating layer over the substrate structure to fill the trench, polishing the first, second and third insulating layers using the padding layer as a polish stop layer, removing the padding layer and simultaneously recessing the third insulating layer to protrude the first and second insulating layers, and etching the first and second insulating layers while recessing the third insulating layer to form a protective layer on sidewalls of the conductive layer.
Abstract:
Disclosed herein are methods for forming wall oxide films in flash memory devices and methods for forming isolation films. After trenches are formed in the substrate, an ISSG (In-Situ Steam Generation) oxidization process is performed to form wall oxide films on sidewalls of the trenches. This process prohibits formation of facets at the top and bottom edge portions of the trenches. Thus, the top edges of the trenches are rounded. Furthermore, the ISSG oxidization process is performed at a low temperature for a relatively short time. Therefore, thermal stress due to carrying out an oxidization process for a long time is reduced and a dislocation phenomenon is thus prevented from occurring.
Abstract:
Adaptive DCT/IDCT apparatus based on energy and method for controlling the same. The adaptive DCT/IDCT apparatus relates to a coding unit of a MPEG4/H.263 video coder, and performs an image processing operation with a high image quality at a high speed by calculating energy values for respective blocks and a mean energy value of the whole image. The apparatus includes an energy calculator for receiving an input image, dividing the input image into blocks of predetermined size, calculating energy values for respective blocks and a mean energy value, and comparing the energy values with the mean energy value; a DCT unit for dividing the input image into predetermined blocks, and performing a DCT operation on the divided blocks; an image coefficient processor for receiving DCT coefficients for respective blocks from the DCT unit according to a result of the comparison of the block's energy value and the mean energy value, and rearranging the DCT coefficients; and an IDCT unit for receiving rearranged DCT coefficients from the image coefficient processor, performing an IDCT operation on the rearranged DCT coefficients, and creating a restored image.
Abstract:
Disclosed is a method of manufacturing the semiconductor devices. The method comprising the steps of forming a gate electrode on a semiconductor substrate, depositing an oxide film for a spacer on the gate electrode, implementing an anisotropic dry etch process for the oxide film for the spacer to form spacers at the sidewalls of the gate electrode, and implementing a rapid thermal annealing process for the spacers under an oxygen atmosphere in order to segregate hydrogen contained within the spacers toward the surface. Therefore, hydrogen contained within the spacer oxide film is not diffused into the tunnel oxide film and the film quality of the tunnel oxide film is thus improved. As a result, program or erase operation characteristics of the flash memory device and a retention characteristic of the flash memory device could be improved.
Abstract:
Disclosed is a method of manufacturing a semiconductor device. A gate is formed on a given region of a semiconductor substrate. Spacers are then formed using DCS-HTO or TEOS. Hydrogen remaining within the spacers is removed by a RTA process under nitrogen atmosphere and nitride films are formed on the spacers at the same time. In case of a flash memory device, a retention characteristic can be improved. A process of forming the nitride film additionally required in a subsequent contact hole formation process may be omitted. The sheet resistance of the gate could be improved by promoting growth of a crystal grain of a tungsten silicide film constituting a control gate.
Abstract:
A method of expanding a digital image for preventing the discontinuity of an expanded image due to the change of the image signal using four pixels rather than two pixels as in the conventional method in analyzing the image signal. The method includes a first step of dividing an input image in the unit of four adjacent pixels, and dividing the four pixels into three sections; a second step of determining an interpolation function between the second and third pixels among the four adjacent pixels by analyzing the digital image every three sections; a third step of setting coordinate values for image expansion using the interpolation function determined at the second step; and a fourth step of obtaining an expanded image of the digital image by repeating the second and third steps until a last line of the digital image is processed.
Abstract:
An H.263/MPEG video encoder using DCT in a mobile communication terminal. The H.263/MPEG video encoder controls a quantization value using granularity analysis by motion estimation and efficiently controls bit rates. The H.263/MPEG video encoder performs DCT for an input image (N−1), quantizes the input image to output the input image as a video stream, decodes the quantized signal by means of inverse quantization (IQ) and inverse discrete cosine transform (IDCT), and performs motion estimation in comparison with a next input image (N). The H.263/MPEG video encoder includes a granularity analyzing section for analyzing granularity using a result of performing the motion estimation, a granularity control section for controlling a quantization value for the quantization according to an analysis result of the granularity analyzing section, and a frame rate control section for controlling a frame speed of an output of the video stream.
Abstract:
An MPEG-4 encoder utilizing an H.263 multimedia chip. The MPEG-4 encoder includes a DC (Direct Current) predictor for predicting a DC component of the image frame encoded by an H.263 standard upon receiving a prescribed MPEG-4 quantization value, and an MPEG-4 reconstruction image memory for converting the H.263 reconstruction image into an MPEG-4 reconstruction image, and storing the MPEG-4 reconstruction image. The MPEG-4 encoder removes spatial redundancy from source image data entered in frame units using a prescribed H.263 quantization value, predicts a DC component of an image frame having no spatial redundancy using a prescribed MPEG-4 quantization value, performs a VLC (Variable Length Coding) process on the image frame using the predicted DC component, and outputs the VLC-processed image frame in the form of an MPEG-4 bit stream. The MPEG-4 encoder reconstructs the image frame having no spatial redundancy, stores the reconstructed image frame, converts the reconstructed image frame into an MPEG-4 frame, stores the MPEG-4 frame, compares the stored image frame with a newly-entered next frame, and removes temporal redundancy according to a result of the comparison.