Abstract:
Disclosed is AA′ graphite with a new stacking feature of graphene, and a fabrication method thereof. Graphene is stacked in the sequence of AA′ where alternate graphene layers exhibiting the AA′ stacking are translated by a half hexagon (1.23 Å). AA′ graphite has an interplanar spacing of about 3.44 Å larger than that of the conventional AB stacked graphite (3.35 Å) that has been known as the only crystal of pure graphite. This may allow the AA′ stacked graphite to have unique physical and chemical characteristics.
Abstract:
A plasma deposition apparatus includes a cathode assembly including a cathode disk and a water-coolable cathode holder supporting the cathode disk, an anode assembly including a water-coolable anode holder, a substrate mounted on the anode holder to serve as an anode, and a substrate holder mounting and supporting the substrate, and a reactor for applying a potential difference between opposing surfaces of the cathode assembly and the anode assembly under a vacuum state to form plasma of a raw gas. The cathode disk comes into thermal contact with the cathode holder using at least one of a self weight and a vacuum absorption force so as to permit thermal expansion of the cathode disk.
Abstract:
Disclosed is a method for fabricating graphene ribbons, comprising: preparing a graphitic material comprising stacked graphene helices; and cutting the graphitic material in a short form by applying energy to the graphitic material; and simultaneously or afterward, decomposing the graphitic material into short graphene ribbons. This method provides a mass production route to graphene ribbons.
Abstract:
A diamond film depositing apparatus and method are disclosed in which a uniform and large plasma is formed on a substrate having a diameter of larger than 100 mm without using a heated filament cathode, without applying a magnetic field thereto, and without using a ballast resistance. The thusly formed plasma is maintained stably for a long time, so that a diamond thick film having a diameter of larger than 4 inches and a thickness of over hundreds of &mgr;m can be deposited on a flat or curved substrate and also on a Si wafer.
Abstract:
There is provided a fabrication method for an AA stacked graphene-diamond hybrid material by converting, through a high temperature treatment on diamond, a diamond surface into graphene. According to the present invention, if various types of diamond are maintained at a certain temperature having a stable graphene phase (approximately greater than 1200° C.) in a hydrogen gas atmosphere, two diamond {111} lattice planes are converted into one graphene plate (2:1 conversion), whereby the diamond surface is converted into graphene in a certain thickness, thus to fabricate the AA stacked graphene-diamond hybrid material.
Abstract:
There is provided a fabrication method for an AA stacked graphene-diamond hybrid material by converting, through a high temperature treatment on diamond, a diamond surface into graphene. According to the present invention, if various types of diamond are maintained at a certain temperature having a stable graphene phase (approximately greater than 1200° C.) in a hydrogen gas atmosphere, two diamond {111} lattice planes are converted into one graphene plate (2:1 conversion), whereby the diamond surface is converted into graphene in a certain thickness, thus to fabricate the AA stacked graphene-diamond hybrid material.
Abstract:
A bio-sensor includes a gate dielectric formed on a silicon semiconductor substrate, a gate electrode of a conductive diamond film formed on the gate dielectric, probe molecules bonded on the gate electrode for detecting biomolecules, and source/drain regions formed on the semiconductor substrate at the sides of the gate electrode. The gate electrode is a comb shape or a lattice shape.
Abstract:
A plasma deposition apparatus includes a cathode assembly including a cathode disk and a water-coolable cathode holder supporting the cathode disk, an anode assembly including a water-coolable anode holder, a substrate mounted on the anode holder to serve as an anode, and a substrate holder mounting and supporting the substrate, and a reactor for applying a potential difference between opposing surfaces of the cathode assembly and the anode assembly under a vacuum state to form plasma of a raw gas. The cathode disk comes into thermal contact with the cathode holder using at least one of a self weight and a vacuum absorption force so as to permit thermal expansion of the cathode disk.
Abstract:
There is disclosed a method for depositing a diamond film on a substrate which utilizes high density direct current glow discharge at a glow-arc transition region to form plasma between a cathode and an anode in a reactor, wherein the cathode maintains its temperature at a range of 2,100 to 2,300.degree. C. and is composed of a plurality of U-shaped filaments which are aligned parallel to one another to form an array and each of which is made by bending a conductive wire.
Abstract:
In the method for depositing a material in the absence of a positive column, a discharge is generated between a cathode and an anode disposed to face each other in a reaction chamber by applying a DC voltage therebetween, and introducing reaction gas into the reaction chamber, thereby depositing a material on a substrate mounted on the anode and serving as a part of the anode, wherein the deposition of the material on the substrate is performed under a state that a cathode glow and an anode glow exist in a form of thin layers coating respectively the surfaces of the cathode and the substrate, while a positive column does not exist or is so small as to be negligible.