Abstract:
Methods and apparatus for synthesizing biodiesel using alkali alkoxide generated on-site using an electrochemical process are disclosed. The apparatus and methods are disclosed to converting alkali salts of glycerine into glycerine and thereby facilitate the separation of clean glycerine from biodiesel. These methods are enabled by the use of alkali ion conductive ceramic membranes in electrolytic cells.
Abstract:
A sanitizing device includes a sanitizing component for sanitizing a surface, liquid, gas, and/or associated surrounding environment. The sanitizing component may be an electrochemical cell having an anode, a cathode, and an electrolyte component, that works in cooperation with a power source and a precursor material. The electrochemical cell, power source and precursor material may be supported by a housing. Upon application of potential across the electrodes of the electrochemical cell, a sanitizer is formed from the precursor material. The housing contains an outlet for releasing the sanitizer.
Abstract:
An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.
Abstract:
A method is provided for synthesizing synthesis gas from carbon dioxide obtained from atmospheric air or other available carbon dioxide source and water using a sodium-conducting electrochemical cell. Synthesis gas is also produced by the coelectrolysis of carbon dioxide and steam in a solid oxide fuel cell or solid oxide electrolytic cell. The synthesis gas produced may then be further processed and eventually converted into a liquid fuel suitable for transportation or other applications.
Abstract:
A process for producing ceramic, or ceramic composite, components having microfeatures by creating a chemical reaction in a castable slurry to bond nano-sized or submicron-sized ceramic powders. The bonding process that gives coherency and strength to the material creates a reaction product or gel-phase resulting from a chemical reaction between the ceramic powder and a reagent, such as an acid, alkali, or inorganic salt solution, that binds the ceramic powder. This gel-phase can be de-hydrated, cured, or crystallized by a higher-temperature firing step, but at a temperature lower than the temperature range at which sintering starts to occur in the ceramic (typically lower than 1,000°C.)