Abstract:
The present disclosure relates to motion adaptive user equipment (UE) in a wireless communications network environment adapted for selecting one or more subsets of accessible user interface (UI) functions based, at least in part, on the determined motion of a UE. By selectively employing the one or more subsets of UI functions, a UE can dynamically adapt to the motion of the UE and limit distracting interactions with the UE creating a safer or more compliant wireless environment. Further disclosed are features related to override of UI limitations, auxiliary location sensing aspects, motion rule updating features, and voluntary and involuntary user preference aspects.
Abstract:
The disclosed subject matter provides for selecting a radio access technology resource based on historical data related to the radio access technology resource. Location information can be employed to determine a radio access technology resource. Historical information related to the radio access technology resource can then be employed to determine the suitability of the radio access technology resource. A set of radio access technology resources can be ordered or ranked to allow selection of a suitable radio access technology resource from the set. Incorporation of historical information can provide for additional metrics in the selection of a radio access technology resource over simple contemporaneous radio access technology resource information. In some embodiments timed fingerprint location (TFL) information can be employed to determine a location.
Abstract:
The disclosed subject matter provides for selecting a radio access bearer resource based on historical data related to the radio access bearer resource. Location information can be employed to determine a radio access bearer resource. Historical information related to the radio access bearer resource can then be employed to determine the suitability of the radio access bearer resource. A set of radio access bearer resources can be ordered or ranked to allow selection of a suitable radio access bearer resource from the set. Incorporation of historical information can provide for additional metrics in the selection of a radio access bearer resource over simple contemporaneous radio access bearer resource information. In some embodiments timed fingerprint location (TFL) information can be employed to determine a location.
Abstract:
Providing for identifying and ticketing mobile network communication errors according to geographic position of the errors is described herein. By way of example, communication errors, such as dropped calls, can be tracked and recorded as a function of position of a mobile terminal affected by a dropped call. A number of these errors within a given location is compared with historic error data to determine statistically anomalous instances of communication errors. Upon identifying such an anomaly, an error ticket can be generated that identifies a geographic region associated with the error. Particularly, the geographic region can be independent of radio access network infrastructure, which is conventionally used as a means of locating events within a mobile network. A geographic error ticket can, in some aspects of the subject disclosure, facilitate discovery and troubleshooting of errors that originate at least in part from unknown or unanticipated sources.
Abstract:
Methods, systems, and apparatuses for comparing multi-dimensional datasets are provided. A multi-dimensional dataset comparison includes receiving a plurality of datasets, each including a plurality of coordinates, wherein a subset of coordinates defines a geo-fence. For a coordinate within a geo-fence of one of the plurality of datasets, determining analogous coordinates in each of the other datasets, the analogous coordinates defining a coordinate input set, and performing in parallel an operation on the coordinate input set to determine whether an entry is present at a coordinate of the coordinate input set.
Abstract:
Systems and techniques for determining the location of user equipment (UE) in a wireless network are disclosed. These techniques leverage geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the target UE time value can be search for in the pre-computed differential value data set indexed by a relevant NodeB site pair to return a set of frames (forming a hyperbola between the site pair) that can be intersected with a second set of frames for a second NodeB site pair for the same UE. The intersecting frames can represent the location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.
Abstract:
Aspects relate to automatically providing updated route and predicted travel time to allow a user to travel a shortest route between a first point and a second point. A route can be planned based on a multitude of route segments, wherein historical data related to speed is known for each of the route segments. Further, the historical data is categorized based on temporal aspects, such as time of day, day of week, as well as other aspects, such as known events that can have an influence on the speed at which each route segment can be traveled. As the user moves along the route, the planned route, as well as an anticipated travel time, are almost continually updated to provide the most up-to-date and accurate data.
Abstract:
The disclosed subject matter provides for employing timed fingerprint location (TFL) information in dynamically selecting a subset of content from a set of content. TFL information can provide location information for user equipment without employing conventional location techniques. As such, TLF information can provide for location-centric selection of content. Further, secondary information correlated to TFL information can be received and employed in dynamic content subset selection. In an aspect, rules can be employed to predict the future location of a user equipment such that dynamic content selection can be tailored to the predicted future position of the user equipment. Moreover, privacy components can be employed to limit the propagation of sensitive information.
Abstract:
Systems and techniques for determining the location of user equipment (UE) in a wireless network are disclosed. These techniques leverage geometric calculations for an overlaid bin grid framework mapping the wireless network area to store differential values for each frame of the bin grid framework for each pair of relevant NodeBs. A timing offset can be determined, such that when a time value from a target UE is accessed, the location can be quickly determined with minimal real time computation. In an aspect, the target UE time value can be search for in the pre-computed differential value data set indexed by a relevant NodeB site pair to return a set of frames (forming a hyperbola between the site pair) that can be intersected with a second set of frames for a second NodeB site pair for the same UE. The intersecting frames can represent the location of the UE in the wireless network. Further, the data can be leveraged to correct timing in the network.
Abstract:
The present disclosure relates to motion adaptive user equipment (UE) in a wireless communications network environment adapted for selecting one or more subsets of accessible user interface (UI) functions based, at least in part, on the determined motion of a UE. By selectively employing the one or more subsets of UI functions, a UE can dynamically adapt to the motion of the UE and limit distracting interactions with the UE creating a safer or more compliant wireless environment. Further disclosed are features related to override of UI limitations, auxiliary location sensing aspects, motion rule updating features, and voluntary and involuntary user preference aspects.