Abstract:
An accessory drive system which is capable of preventing the driving efficiency thereof from being lowered and achieving simplified construction, and reduction of the size and manufacturing costs. The system has a rotating machine including a first rotor, a second rotor, and a stator. The first rotor is formed by magnetic poles circumferentially arranged, with each two adjacent ones having different polarities. The stator has an armature row for generating a rotating magnetic pole that circumferentially rotates, between the armature and magnetic pole rows. The second rotor is formed by soft magnetic material elements circumferentially arranged with space, and disposed between the magnetic pole and armature rows. A ratio between the number of the armature magnetic poles, that of the magnetic poles, and that of the soft magnetic material elements is set to 1:m:(1+m)/2(m≠1.0).
Abstract:
A power unit which makes it possible to attain the reduction of the size and manufacturing costs thereof, and improve turnability. A power unit drives left and right rear wheels. A first rotating machine and a second rotating machine are configured to be capable of inputting and outputting energy. A first and a second planetary gear units are disposed between the first and second rotating machines and the left and right rear wheels, respectively, for transmitting energy between the first rotating machine and the left and right rear wheels and between the second rotating machine and the same. The first rotating machine, the left rear wheel, the right rear wheel, and the second rotating machine are in a collinear relationship in rotational speed, and are in a line in this order in a collinear chart representing the collinear relationship.
Abstract:
A power unit capable of downsizing rotary motors and enhancing efficiency of the power unit. In first and second planetary gear units, a first ring gear, a first carrier, a second sun gear, a first sun gear, a second carrier, and a second ring gear, capable of transmitting power to each other, are configured such that they satisfy a collinear relationship and are in a line in a collinear chart. The first carrier and the second sun gear are connected to a prime mover, and the first sun gear and the second carrier are connected to drive wheels. The first and second ring gears are connected to the first and second rotary motors, respectively. The first and second rotary motors are connected to each other. A transmission is disposed at least between the first rotary motor and the first ring gear or between the second rotary motor and the second ring gear.
Abstract:
An electric motor (M) includes first and second stators (12L, 12R) on the outside forming a rotating magnetic field, an outer rotor (13) disposed inside the first and second stators (12L, 12R) and having first and second induced magnetic poles (38L, 38R), and an inner rotor (14) disposed inside the outer rotor (13) and having first and second permanent magnet (52L, 52R). The phases of the first and second induced magnetic poles (38L, 38R) of the outer rotor (13) are displaced from each other by only half of a predetermined pitch, and the phases of the first and second permanent magnets (52L, 52R) of the inner rotor (14) are displaced from each other by only the predetermined pitch. Accordingly, the first and second stators (12L, 12R) facing the first induced magnetic poles (38L) and the second induced magnetic pole (38R) can be made to have the same phase and polarity, thus simplifying the structures of the first and second stators (12L, 12R).
Abstract:
To provide a power plant which is capable of reducing power passing through a distributing and combining device, thereby making it possible to attain reduction of the size and manufacturing costs of the power plant and enhance driving efficiency of the same. The power plant 1 for driving driven parts DW and DW includes a prime mover 3, a first distributing and combining device 20 having first, second and third elements 21, 24 and 22, a second distributing and combining device 30 having fourth, fifth and sixth elements 31, 34 and 32, and speed-changing devices 40, 50, 2, 61 and 62 which are connected to the third and sixth elements 22 and 32 and are capable of changing the relationship between the rotational speed of the third element and that of the sixth element 32. The second and fourth elements 24 and 31 are mechanically connected to an output shaft 3a of the prime mover 3, and the first and fifth elements 21 and 34 are mechanically connected to the driven parts DW and DW.
Abstract:
A power unit capable of downsizing rotary motors and enhancing efficiency of the power unit. In first and second planetary gear units, a first ring gear, a first carrier, a second sun gear, a first sun gear, a second carrier, and a second ring gear, capable of transmitting power to each other, are configured such that they satisfy a collinear relationship and are in a line in a collinear chart. The first carrier and the second sun gear are connected to a prime mover, and the first sun gear and the second carrier are connected to drive wheels. The first and second ring gears are connected to the first and second rotary motors, respectively. The first and second rotary motors are connected to each other. A transmission is disposed at least between the first rotary motor and the first ring gear or between the second rotary motor and the second ring gear.
Abstract:
A motor includes a stator having first and second armatures to form a rotating magnetic field, an inner rotor having first and second permanent magnets, and an outer rotor arranged between the stator and the inner rotor. The outer rotor has a rotor body which supports first and second induction magnetic poles such that they are embedded therein. A phase of the first induction magnetic pole is matched with a phase of the second induction magnetic pole. The first and second induction magnetic poles are assembled to the rotor body such that they are inserted into linear slits formed in the rotor body in the axis direction. Because the first and second induction magnetic poles are aligned in the axis direction, the outer rotor has a simple structure and an increased strength, and also support and assembling of the first and second induction magnetic poles in the outer rotor are facilitated.
Abstract:
[Object] To provide a magnetic power transmission system which is capable of enhancing power transmission efficiency and power transmission capacity and reducing manufacturing costs of the system, while maintaining the advantageous effects obtained by performing power transmission by magnetic forces.[Solution] A magnetic power transmission system is comprised of an outer rotor 11 including a plurality of left and right permanent magnets 11c arranged in a circumferential direction, an inner rotor 12 including a plurality of left and right permanent magnets 12c arranged in the circumferential direction, and an intermediate rotor 13 including a plurality of left and right soft magnetic material elements 13d and 13e arranged in the circumferential direction. When each of the left and right permanent magnets 11c and 11c, and each permanent magnet 12c are in an opposed position opposed to each other, the magnetic pole of the left permanent magnet 11c and the magnetic pole at the left-side portion of the permanent magnet 12c have polarities different from each other, the magnetic pole of the right permanent magnet 11c and the magnetic pole at the right-side portion of the permanent magnet 12c have the same polarity. Further, when one of the soft magnetic material elements 13d and 13e is between two pairs of permanent magnets 11c and 12c, the other is between two permanent magnets 11c and 12c adjacent to each other.
Abstract:
An electric motor driven by three-phase electric power includes armature windings that are connected in series, via an armature-winding connecting line, for each of a plurality of groups of three or N circumferentially-adjoining poles to thereby provide three-phase armature windings, wherein N is an arbitrary number equal to a multiple of three. The armature-winding connecting line connects in series the adjoining armature windings in such a way as to not substantially straddle a relatively great part of the outer periphery of any of the adjoining armature windings.
Abstract:
An electric motor driven by three-phase electric power includes armature windings that are connected in series, via an armature-winding connecting line, for each of a plurality of groups of three or N circumferentially-adjoining poles to thereby provide three-phase armature windings, wherein N is an arbitrary number equal to a multiple of three. The armature-winding connecting line connects in series the adjoining armature windings in such a way as to not substantially straddle a relatively great part of the outer periphery of any of the adjoining armature windings.