Abstract:
A motor/generator/transmission system includes: an axle; a stator ring having a plurality of stator coils disposed around the periphery of the stator ring, wherein each phase of the plurality of stator coils includes a respective set of multiple parallel non-twisted wires separated at the center tap with electronic switches for connecting the parallel non-twisted wires of each phase of the stator coils all in series, all in parallel, or in a combination of series and parallel; a rotor support structure coupled to the axle; a first rotor ring and a second rotor ring each having an axis of rotation coincident with the axis of rotation of the axle, at least one of the first rotor ring or the second rotor ring being slidably coupled to the rotor support structure and configured to translate along the rotor support structure in a first axial direction or in a second axial direction.
Abstract:
A military vehicle includes a chassis, a front axle, a rear axle, an energy storage system, an engine, a transmission, and a motor. The chassis includes a passenger capsule, a front module coupled to a front end of the passenger capsule, and a rear module coupled to a rear end of the passenger capsule. The passenger capsule defines a tunnel extending longitudinally along a bottom thereof. The front module includes a front subframe assembly. The rear module includes a rear subframe assembly. The front axle is coupled to the front subframe assembly. The rear axle is coupled to the rear subframe assembly. The engine is supported by the front subframe assembly. The transmission is positioned within the tunnel and coupled to the front axle and/or the rear axle. The motor is at least partially positioned within the tunnel and positioned between the engine and the transmission.
Abstract:
Methods and systems are provided for controlling clutch capacity in a hybrid electric vehicle. In one example, a method includes adjusting values of a transfer function of a clutch of a dual clutch transmission in response to an operating condition of an engine and/or operating condition of an integrated starter/generator coupled to the engine while a vehicle is propelled via an electric machine coupled to the dual clutch transmission, and maintaining a driver demand wheel torque at vehicle wheels via adjusting torque of the electric machine in response to the operating condition of the engine and/or operating condition of the integrated starter generator. In this way the method may apply pressure to one of the clutches where engine speed is independently controlled to maintain positive or negative slip, thus enabling adaptation of positive and negative clutch transfer functions, which may improve driveline operation and shift quality.
Abstract:
The invention relates to a method for operating a hybrid drive device (2) which has an internal combustion engine (3) and an electric machine (4) which can be or is operatively connected to the internal combustion engine (3) and can be operated as a generator, wherein in a normal operating mode a temperature of the electric machine (4) is determined by means of a temperature sensor (14), and operation of the electric machine (4) is permitted only if the temperature is lower than a predefined maximum temperature. There is provision here that in the event of a defect in the temperature sensor (14) an emergency operating mode is carried out in which operation of the electric machine (4) is permitted only with limited power, limited torque and/or over a limited time period. The invention further relates to a hybrid drive device (2).
Abstract:
The inventors' findings relate to a transmission for vehicles, comprising an input side configured for being coupled to a prime mover and an output side configured for being coupled to a driven element wherein the transmission comprises an electromagnetic torque converter (EMTC), wherein the EMTC has at least two output paths, namely the first output path coupled to a gear box which is preferably configured for being coupled to a drive shaft of the vehicle, and a second output path which is configured to be coupled to an auxiliary power provider. The inventors' findings also relate to a vehicle driveline comprising said transmission. Furthermore, the inventors' findings also relate to a vehicle comprising said vehicle driveline.
Abstract:
A drive unit for a vehicle includes: an engine (2); a compound motor (3) having a first rotor and a second rotor that are differentially rotatable with each other; and an automatic transmission (4A) that delivers power output of the engine (2), which is input via the compound motor (3), to an output shaft (33), in which the first rotor is connected to an input side of a gear pair that corresponds to an even shift speed and the second rotor is connected to an input side of a gear pair that corresponds to an odd shift speed.
Abstract:
An apparatus is provided comprising a flywheel (112) for storing kinetic energy and an electrical machine (190) mechanically coupled to the flywheel and arranged for conversion between mechanical and electrical energy. The apparatus is arranged for transferring energy between the flywheel and a vehicle transmission via a variable ratio transmission (182). The electrical machine is coupled to the flywheel via a disconnect clutch which comprises a magnetic coupling (116).
Abstract:
A hybrid drive is proposed for traction wheels of a vehicle, which drive comprises a mechanical power source with a shaft, a planetary mechanism having a sun and a ring gear wheels, and two reversible electrical machines connected to an electrical power source via a control system. A carrier of the planetary mechanism is coupled to the shaft. With the view to increasing the traction wheels' torque, one of the electrical machines is designed as a two-dimensional machine with two rotatable members, one of which members is coupled to the sun gear wheel, the second member is coupled to the ring gear wheel. For increasing the performance characteristics, the drive is provided with two controllable clutches, which make it possible to interconnect the rotatable members and to couple the carrier to an immovable portion of the drive or vehicle. Operation of the drive in various motion modes is also described.
Abstract:
To provide a power plant which makes it possible to make the power plant more compact in size, reduce manufacturing costs thereof, and improve the degree of freedom in design. The power plant 1 comprises an engine 3, and first and second rotating machines 10 and 20, and drives front wheels 4 by motive power from these. The first rotating machine 10 includes first and second rotors 14 and 15, and a stator 16, and is configured such that a ratio between the number of armature magnetic poles generated in the stator 16, the number of magnetic poles of the first rotor 14, and the number of soft magnetic material cores 15a of the second rotor 15 becomes 1:m:(1+m)/2 (m≠1.0).
Abstract:
The invention relates to a power transmission device (1.1) that comprises an input shaft (2) to be connected to a thermal engine (3) and an output shaft (4) to be connected to a wheel shaft (5). The device (1.1) includes first and second electric machines (6, 7) and a mechanical assembly (12) ensuring the mechanical link between the input shaft, the output shaft and the shafts (8, 9) of the machines (6, 7). According to the invention, in order to limit the use of the epicyclic gear trains, at least one of the electric machines (8, 9) comprises a rotor (6.1) and a stator (6.2) connected to the mechanical assembly (12).