Abstract:
A solar cell with improved energy efficiency is presented. The solar cell includes a substrate having a plurality of cell areas separated by a cell separation area, back electrodes spaced apart from each other by a gap, a light absorbing layer, a transparent electrode layer, and a buffer layer. Each of the back electrodes is disposed over neighboring cell areas and a cell separation area. The light absorbing layer is disposed on the back electrodes and in the gap to absorb incident light. A contact hole extends through the light absorbing layer to a portion of the back electrodes. The transparent electrode layer disposed on the light absorbing layer connects to the back electrodes through the contact hole. The buffer layer is disposed between the light absorbing layer and the transparent electrode layer to cover upper and side surfaces of the light absorbing layer.
Abstract:
The present invention provides a method of manufacturing a touch screen, comprising the steps of: a) forming a conductive layer on a substrate; b) forming an etching resist pattern on the conductive layer; and c) forming a conductive pattern having a line width smaller than the line width of the etching resist pattern by over-etching the conductive layer by using the etching resist pattern and a touch screen manufactured by the method. According to the present invention, a touch screen comprising a conductive pattern having an ultrafine line width can be economically and efficiently provided.
Abstract:
Provided are a method for manufacturing a heating element, which includes: determining a form of a pattern in which a line width is 100 micrometers or less and an opening ratio is in the range of 70% to 99%; printing a paste that includes the conductive heating material according to the determined pattern on at least one side of a resin film; forming a conductive heating pattern by sintering the printed paste that includes the conductive heating material; forming bus bars on both sides of the conductive heating pattern; attaching a transparent substance to at least one side of the resin film that has the conductive heating pattern; and providing a power portion that is connected to the bus bar, and a heating element that is manufactured by using the method.
Abstract:
A method of graphically resizing content displayed on a portion of a display screen of a mobile communication terminal is provided. The method comprises selecting a first area of an image graphically rendered on a display screen, content in the first area having a first set of dimensions and a first central point in a first relationship with boundaries of the first area; and graphically re-rendering the content in the first area on the display screen such that the content in the first area is displayed on the display screen in a second area of the screen having a second set of dimensions and a second central point having proportionally the first relationship with boundaries of the second area.
Abstract:
Disclosed is a method and apparatus for providing timemarking based on speech recognition and a tag. The present embodiment provides a method and apparatus for providing timemarking based on speech recognition and a tag, in which after an audio and video of a selected medical video are separated, scene-based tag data extracted from the video and an audio-based text acquired from the audio are compared with a predefined keyword to determine a keyword for each section of the image, and then perform time marking for each section.
Abstract:
The present invention provides a heat emitting body including a) a transparent substrate, and b) a conductive heat emitting pattern having a boundary line shape of figures forming a Voronoi diagram and an intersection point part of boundary lines, at which two or more boundary lines meet each other, forming a curve on at least one side of the transparent substrate, and a method for manufacturing the same.
Abstract:
Provided are a heating element, which includes: a transparent substance; a conductive heating line that is provided on at least one side of the transparent substance; bus bars that is electrically connected to the conductive heating line; and a power portion that is connected to the bus bars, wherein 30% or more of the entire area of the transparent substance has a conductive heating line pattern in which, when the straight line that intersects the conductive heating line is drawn, a ratio (distance distribution ratio) of standard deviation in respects to an average value of distances between adjacent intersection points of the straight line and the conductive heating line is 2% or more, and a method for manufacturing the same.
Abstract:
Provided are a heating element that includes: a transparent substance; a conductive heating line that is provided on at least one side of the transparent substance; bus bars that is electrically connected to the conductive heating line; and a power portion that is connected to the bus bars, wherein 30% or more of the entire area of the transparent substance has a conductive heating line pattern that is formed of closed figures where a distribution is continuous and a ratio (area distribution ratio) of a standard deviation in respects to an average value of areas of the closed figures is 2% or more, and a method for manufacturing the same.
Abstract:
A storage controller includes a first on-die termination (ODT) circuit, a second ODT circuit and an ODT control circuit. The first ODT circuit provides a first termination resistance with a strobe signal line transferring a data strobe signal. The second ODT circuit provides a second termination resistance with at least one data line transferring data. The ODT control circuit individually controls activation and deactivation of the first ODT circuit and the second ODT circuit.
Abstract:
A storage controller includes a first on-die termination (ODT) circuit, a second ODT circuit and an ODT control circuit. The first ODT circuit provides a first termination resistance with a strobe signal line transferring a data strobe signal. The second ODT circuit provides a second termination resistance with at least one data line transferring data. The ODT control circuit individually controls activation and deactivation of the first ODT circuit and the second ODT circuit.