Abstract:
A device for disposing a gas, the device including: a chamber; a plurality of gas jetting plates disposed in the chamber, each gas jetting plate of the plurality of gas jetting plates including a plurality of gas jetting holes disposed on a surface thereof; and a gas pipe fluidly connected to the gas jetting plate and extending outside the chamber, wherein each gas jetting plate includes a first stage, which is fluidly connected to the gas pipe, and a final stage, which includes the plurality of gas jetting holes.
Abstract:
A solar cell and a method of fabricating the same are provided according to one or more embodiments. According to an embodiment, the solar cell includes a substrate, a back electrode layer formed on the substrate, a light absorbing layer formed on the back electrode layer, and a transparent electrode layer formed on the light absorbing layer, wherein the light absorbing layer is comprised of copper (Cu), gallium (Ga), indium (In), sulfur (S), and selenium (Se) and includes a first concentration region in which concentrations of sulfur (S) gradually decrease in the light absorbing layer going in a first direction from the back electrode layer to the transparent electrode layer.
Abstract:
The present invention relates to a hydrogenation catalyst represented by the following formula 1, a method for the preparation thereof, and a method for preparing gamma-butyrolactone using this catalyst. The method for preparing gamma-butyrolactone from maleic anhydride using the catalyst of the invention prepared by stabilizing the precursor particles of copper oxide, zinc oxide, and manganese oxide with a silica exhibits high selectivity, high yield, and high productivity under the operation conditions of a low molar ratio of hydrogen with regard to the reactants, and enables the preparation of gamma-butyrolactone from maleic anhydride with long-term stability without requiring frequent re-activation of the catalyst: Formula (1) CuO(a)ZnO(b)MnO2(c)SiO2(d) wherein a, b, c, and d are represented on the basis of weight, wherein a is 20 to 90, b is 0.01 to 10, c is 0.01 to 5, and d is 5 to 50.
Abstract:
The present invention relates to a Personal Rapid Transit system for transporting passengers along a pre-set guideway, and more particularly relates to a future Personal Rapid Transit vehicle braking system. A conventional braking system can not provide the large braking force required for very short headway operation under the effect of weather and environmental conditions due to variations in the available coefficients of friction at the running surfaces. In particular, the Personal Rapid Transit which is a public transportation system can not adopt the conventional braking system since the vehicles are powered by linear motors and are independent of traction. The PRT brake system comprises brake reaction rails (120) mounted on each inside of the guideway and brakes (300) acting on these brake reaction rails (120) as calipers. The brakes are automatically actuated when electric power supply is cut off, and thus can serve as parking brakes and emergency brakes. Since the braking system of the present invention is supplied with power via the strain energy stored in steel spring members, no external power source for its operation is required. Furthermore, the system comprises a redundant failure monitored brake releasing unit (380) which is driven by duplicate redundant electric motors. Accordingly, the PRT braking system of the present invention represents a highly efficient fail-safe parking or emergency brake.
Abstract:
A device for disposing a gas, the device including: a chamber; a plurality of gas jetting plates disposed in the chamber, each gas jetting plate of the plurality of gas jetting plates including a plurality of gas jetting holes disposed on a surface thereof; and a gas pipe fluidly connected to the gas jetting plate and extending outside the chamber, wherein each gas jetting plate includes a first stage, which is fluidly connected to the gas pipe, and a final stage, which includes the plurality of gas jetting holes.
Abstract:
A solar cell with improved energy efficiency is presented. The solar cell includes a substrate having a plurality of cell areas separated by a cell separation area, back electrodes spaced apart from each other by a gap, a light absorbing layer, a transparent electrode layer, and a buffer layer. Each of the back electrodes is disposed over neighboring cell areas and a cell separation area. The light absorbing layer is disposed on the back electrodes and in the gap to absorb incident light. A contact hole extends through the light absorbing layer to a portion of the back electrodes. The transparent electrode layer disposed on the light absorbing layer connects to the back electrodes through the contact hole. The buffer layer is disposed between the light absorbing layer and the transparent electrode layer to cover upper and side surfaces of the light absorbing layer.
Abstract:
A battery charging device using an ear-microphone jack of a mobile apparatus. The battery charging device comprises a battery; an ear-microphone socket having a microphone contact, an earphone contact, and a common ground contact; a modem chip having a microphone input port connected to the microphone contact or an internal microphone and an earphone output port connected to the earphone contact or an internal speaker; and a cutting-off element connected between a power supply contact and the battery, for providing a charging voltage provided via the power supply contact to the battery and preventing a current from flowing backward from the battery to the modem chip. A power supply device comprises a plug having terminals connectable to contacts of the ear-microphone socket; and a power source connector for connecting a power supply source to the plug.
Abstract:
Methods for screening for inhibitors of endoplasmic reticulum (ER) stress are provided. These methods involve the addition of thapsigargin, which induces ER stress, and a test agent to mammalian cells in multi-well plates. Cell survival can be readily monitored by measuring intracellular ATP content using a bioluminescent reagent. Screening a commercially available library of 50,000 compounds led to the identification of 93 hit compounds that were subjected to secondary assays to confirm their ability to rescue cells from thapsigargin-induced cell death.
Abstract:
A semiconductor device includes a substrate having a dielectric layer and a device layer on the substrate. The device layer has an opening. First and second sublayers are disposed on the device layer and line the opening. The second sublayer serves as a stop layer for planarization to provide a substantially planarized top surface for the semiconductor device.
Abstract:
A semiconductor device comprises a semiconductor substrate having a high voltage region and a low voltage region, at least a pair of adjacent high voltage MOS transistors disposed on the high voltage region of the semiconductor substrate, and low voltage MOS transistors disposed on the low voltage region of the semiconductor substrate. A first element isolator comprises a first shallow trench disposed on a surface of the low voltage, region of the semiconductor substrate, and a first dielectric embedded in the first shallow trench. A pair of second element isolators comprises two second shallow trenches spaced apart at an interval between a source region or a drain region of the pair of the adjacent high voltage MOS transistors and a source or a drain region of the other of the pair of the adjacent high voltage MOS transistors, and a second dielectric embedded in each of the second shallow trenches. The second shallow trenches are disposed on a surface of the high voltage region of the semiconductor substrate. A channel cut region having a high impurity concentration is disposed on the surface of the substrate between the second shallow trenches.