Abstract:
Provided are a nano wire grid polarizer and a liquid crystal display apparatus. The nano wire grid polarizer transmits light having a first polarization and reflects light having a second polarization. The polarizer includes a dielectric layer, and a plurality of nano wire array layers, each of the plurality of nano wire layers comprising a plurality of nano wires which are arranged in parallel to each other and spaced at regular intervals. The plurality of nano wire array layers are stacked to be spaced apart one another.
Abstract:
Provided are a wire grid polarizer (WGP) and a method of fabricating the same. The WGP transmits first polarized light and reflects second polarized light among incident light, and includes at least one transparent dielectric layer; and a wire grid including a plurality of wires periodically arranged in the dielectric layer, each of the plurality of wires including a first region whose width gradually increases in a direction from the top of the wire grid to the bottom of the wire grid, and a second region whose width gradually decreases in a direction from the top of the wire grid to the bottom of the wire grid.
Abstract:
An illumination device for a liquid crystal display (LCD) is provided, including: a flat light guide plate having a light exit surface; at least one linear source unit integrally formed with a side of the flat light guide plate and extending along the at least one side of the flat light guide plate; one or more point light sources emitting light through at least one of the side surfaces of the linear light source unit; and a plurality of light exit holes vertically passing through the flat light guide plate and arranged in a longitudinal direction of the linear light source unit between the light exit surface of the flat light guide plate and the linear light source unit, wherein each of the light exit holes has a reflective surface that totally reflects light incident on the linear light source unit into the flat light guide plate.
Abstract:
An edge light type backlight unit having an improved light-reception portion. The backlight unit includes one or more light sources that emit light, a light guide panel that guides the propagation of light incident on one side edge thereof, one or more light-reception portions having a first entrance face slanted opposite the side edge of the light guide panel on which the light is incident at a predetermined angle, and one or more reflecting elements that are disposed between each of the light-reception portions and each of the light sources and guides the light emitted by the light source so that it is incident on the first entrance face.
Abstract:
A backlight unit is provided including a light guide panel (LGP), a point light source emitting light at an edge of the LGP; and a refraction member being positioned between the point light source and the LGP and refracting the light emitted from the point light source toward the optical axis of the point light source in order to reduce the azimuth angle of the light that is incident upon the LGP. The refraction member includes a prism array in which a V-shaped prism pattern is repeatedly arrayed, the apex of the prism pattern facing the edge of the LGP, and a transparent portion that prevents the light from being totally reflected by the prism pattern in a region along an optical axis of the light source.
Abstract:
A backlight unit includes a light guide panel where a holographic pattern is formed. A point light source emits light to an edge of the light guide panel. A refractive member is provided between the point light source and the light guide panel and reduces an azimuth angle of light incident on the light guide panel. The refractive member includes, from an optical axis of the point light source, a light transmission zone transmitting light as it is, a blaze zone where a blaze pattern having a saw-toothed shape in which one surface near the optical axis and substantially parallel to the optical axis is formed, and a prism zone where a triangular prism pattern is formed. The backlight unit may further include a diffusive member diffusing light emitted from the point light source to be incident on the refractive member.
Abstract:
An illumination apparatus for planar display devices, including an optical element for making light travel parallel to an optical axis, is provided. The illumination apparatus includes a dot light source for radiating light, and a light guide plate having the optical element. The optical element is composed of a first refraction facet, which is adjacent to the dot light source and increases the emission angle of the light, and a second refraction facet, which is isolated a predetermined distance from the first refraction facet while facing the first refraction facet and reduces the emission angle of the light. In this structure, the light travels parallel to the optical axis. In the illumination apparatus, the emission angle of incident light is reduced, preferably, the light travels parallel to the optical axis. Therefore, areas not reached by light, between adjacent dot light sources, are eliminated, and light is uniformly incident upon a hologram so that the luminance and intensity of light emitted from the light guide plate are uniformly distributed.
Abstract:
A random copolymer having a structure represented by the following Formula 1: wherein R is phosphonic acid, Me is a methyl group, x is a number of styrene units, and y is a number of methyl methacrylate units.
Abstract:
An organic light emitting diode (OLED) display device and a method of fabricating the OLED display device, the OLED display device includes a substrate including an emission region and a non-emission region, a black matrix disposed in a region excluding a part of the emission region, a buffer layer disposed on the entire surface of the substrate, a semiconductor layer disposed on the buffer layer in the non-emission region, a gate electrode disposed on the semiconductor layer, a gate insulating layer insulating the semiconductor layer from the gate electrode and formed on the entire surface of the substrate, a first electrode formed on the gate insulating layer in the emission region, source and drain electrodes electrically connected with the semiconductor layer and the first electrode, an interlayer insulating layer insulating the source and drain electrodes from the gate electrode and opening a part of the first electrode, a pixel defining layer opening a part of the first electrode and disposed on the entire surface of the substrate, an organic layer disposed on the first electrode, and a second electrode disposed on the entire surface of the substrate. Here, the first electrode includes a transparent conductive oxide layer.
Abstract:
Provided is a method of fabricating a wire grid polarizer. The method includes: forming a photocatalytic layer on a first substrate; forming a patterned resin layer having a plurality of parallel grooves; forming a wire grid by filling the grooves with a metal; and transferring the wire grid and the resin layer to a second substrate.