Abstract:
A display apparatus includes a plurality of light sources which emit light beams, a plurality of optical waveguides which guide the light beams, a plurality of scanning lines which are arranged so as to intersect with the optical waveguides, a plurality of light output elements which, at intersections of the optical waveguides and the scanning lines, output the light beams guided in the optical waveguides by electric signals from the scanning lines, and a scanning line driving unit which drives the scanning lines in a direction opposite to a direction in which the light beams are guided.
Abstract:
An optical sensor element includes: an n-type semiconductor region formed on a substrate; an i-type semiconductor region which is formed on the substrate between the p-type semiconductor region and the n-type semiconductor region and which is lower in impurity concentration than the p-type semiconductor region and the n-type semiconductor region; an anode electrode formed on the insulation film and connected to the p-type semiconductor region; and a cathode electrode formed on the insulation film and connected to the n-type semiconductor region. A reverse bias voltage Vb is applied when detecting the photocurrent, the reverse bias voltage Vb satisfying a following relation. V1
Abstract:
A display apparatus includes a plurality of optical waveguides which are arranged in a row and have light output areas, a plurality of light sources which emit light beams incident upon the optical waveguides, a plurality of scanning lines whose cross-sections have convex portions and concave portions alternately positioned in a column, wherein inner surfaces of each of the convex portions and the concave portions are arranged so as to face the optical waveguides, and, by applying an electric field, the convex portions and the concave portions undergo displacement, and a control unit which controls the scanning lines with the application of an electric field sequentially.
Abstract:
A method of manufacturing an active matrix type display device, which is reliable and flexible, is provided. An active matrix type display device according to an aspect of the present invention includes: a first substrate, which is flexible; a thin glass layer provided on the first substrate via an adhesion layer, and having projections and depressions on a surface thereof opposing to the first substrate, the projections and depressions having rounded tips and bottoms; active elements provided on the thin glass layer, each active element corresponding to a pixel; a display provided above the thin glass layer, and driven by the active elements to display an image pixel by pixel; and a second substrate provided on the display, and having an opposing electrode formed thereon.
Abstract:
A liquid crystal display includes a back substrate, a front substrate, and an optical filter layer interposed therebetween. The optical filter layer contains a liquid crystal material which forms a bend configuration when a voltage is applied between electrodes of the back and front substrates. The electrodes of the back and front substrates are covered with alignment layers which include corrugated surfaces at positions of the electrodes. Each corrugated surface includes upslopes and downslopes steeper than the upslopes or vertical surfaces which are alternately joined.
Abstract:
A display input device comprises a display unit having a flexibility; and a first form change detection unit having a flexibility. The first form change detection unit is able to detect a deformation ascribed to the flexibility as a change in a electrical property. A display input system further comprises a display driving unit that supplies a display signal to the display unit and signal judging unit that judges a input data based on the change in a electrical property in the first form change detection unit. The input of a first data can be performed by adding the deformation to the display input device.
Abstract:
A display device comprises a first plastic substrate, a first adhesion layer formed in a first region of the first plastic substrate, the first region being a region where a pixel region is to be formed thereon, a second adhesion layer formed in a peripheral region outside of the first region of the first plastic substrate, a first thin glass layer formed on the first and second adhesion layers, a plurality of active elements formed on the first thin glass layer in one-to-one relation with a plurality of pixels, a display part formed on the first thin glass layer, the display part corresponding to the pixel region and being driven by the plurality of active elements, and an opposing substrate formed over the display part.
Abstract:
A display device includes linear structures each having a first conductor linearly extended and a light emitting layer structure which covers at least a part of the conductor, the linear structures being arranged in parallel. The linear structures are electrically insulated by first insulating portions from one another. Second conductors are arranged in parallel so as to cross the linear structures and electrically connected to the light emitting layer structures at crossing portions arranged in a matrix. The linear conductors are electrically insulated by the linear conductors from one another.
Abstract:
A display device comprises a first plastic substrate, a first adhesion layer formed in a first region of the first plastic substrate, the first region being a region where a pixel region is to be formed thereon, a second adhesion layer formed in a peripheral region outside of the first region of the first plastic substrate, a first thin glass layer formed on the first and second adhesion layers, a plurality of active elements formed on the first thin glass layer in one-to-one relation with a plurality of pixels, a display part formed on the first thin glass layer, the display part corresponding to the pixel region and being driven by the plurality of active elements, and an opposing substrate formed over the display part.
Abstract:
A liquid crystal display device of the present invention includes a liquid crystal layer intervened between a first and a second electrode; a circuit for applying a first data signal; a circuit for applying a second data signal; a circuit for holding a selecting signal; and a selecting circuit for applying the first data signal or the second data signal to the first electrode corresponding to the selecting signal held in the holding means. A state of applying the first data signal to a pixel and a state of applying the second data signal to the pixel are determined corresponding to a selecting signal. Since these two states are held by the holding circuit, the selecting signal is not required to be applied when an image displayed does not change, and power consumption is lowered extensively. In addition, a liquid crystal display device of the invention includes a liquid crystal layer intervened between a first electrode and a second electrode; a memory which is connected to the first electrode and holds a data signal as a capacitance variable corresponding to the data signal; and a circuit for applying an AC voltage to the first electrode or the second electrode. When the AC voltage is applied to the first electrode or the second electrode, the applied AC voltage is divided by a capacitance held by the memory and a capacitance of the liquid crystal layer, thereby enabling to make gradational display.