Abstract:
A wireless communication terminal including a transceiver coupled to a processor and corresponding methods are disclosed. The processor is configured to determine resource elements that carry data intended for the terminal from a set of allocated resource elements that carry data intended for the terminal excluding at least resource elements associated with a first set of one or more resource elements of a particular type that are shifted relative to a known reference signal pattern. The processor is also configured to decode the resource elements that carry the data intended for the terminal based on the resource elements that carry the data intended for the terminal.
Abstract:
In a wireless communication system, a method and apparatus for closed loop transmission is disclosed. In accordance with the preferred embodiment of the present invention, a time frequency portion of an uplink frame is dynamically reserved as a sounding zone for uplink channel sounding. A first message is transmitted to a first subscriber station in a downlink frame assigning a time-frequency resource within the sounding zone, and a sounding waveform. Furthermore, a signal is received from the subscriber station within the assigned time-frequency resource, a partial channel response is determined from the received sounding signal, and the subsequent transmission to the subscriber station is tailored based on the at least partial channel response.
Abstract:
In a wireless communication system, a method and apparatus for closed loop transmission is disclosed. In accordance with the preferred embodiment of the present invention, a time frequency portion of an uplink frame is dynamically reserved as a sounding zone for uplink channel sounding. A first message is transmitted to a first subscriber station in a downlink frame assigning a time-frequency resource within the sounding zone, and a sounding waveform. Furthermore, a signal is received from the subscriber station within the assigned time-frequency resource, a partial channel response is determined from the received sounding signal, and the subsequent transmission to the subscriber station is tailored based on the at least partial channel response.
Abstract:
A method and apparatus for performing spatial-division multiple access within a communication system is provided herein. During operation, nodes will return null subspace information along with their channel subspace information. The null subspace is similar to the channel subspace except that the null subspace information directs a base station to the matrix in a predefined codebook that results in minimum power being received at the node. The null subspace for each node is taken into consideration when communicating with a particular node.
Abstract:
A base station communicates a positioning reference signal (PRS) to wireless communication devices over a downlink in a wireless communication system by encoding a PRS into a first set of transmission resources, encoding other information into a second set of transmission resources, multiplexing the two sets of resources into a subframe such that the first set of resources is multiplexed into at least a portion of a first set of orthogonal frequency division multiplexed (OFDM) symbols based on an identifier associated with the base station and the second set of resources is multiplexed into a second set of OFDM symbols, and transmitting the subframe. Upon receiving the subframe, a wireless device determines which set of transmission resources contains the PRS based on the identifier associated with the base station that transmitted the subframe and processes the set of resources containing the PRS to estimate timing (e.g., time of arrival) information.
Abstract:
A method for configurable spatial channel information feedback in wireless communication systems is disclosed including receiving, at the wireless communication device, transmission from a plurality of antennas, receiving an indication of a feedback mode for feeding back spatial channel information that is based on correlations among at least some of the plurality of antennas, decomposing a correlation matrix representative of the correlations among at least some of the plurality of antennas into at least two Kronecker components, and feeding back parameters representative of the Kronecker components according to the feedback mode indicated.
Abstract:
A base station communicates a positioning reference signal (PRS) to wireless communication devices over a downlink in a wireless communication system by encoding a PRS into a first set of transmission resources, encoding other information into a second set of transmission resources, multiplexing the two sets of resources into a subframe such that the first set of resources is multiplexed into at least a portion of a first set of orthogonal frequency division multiplexed (OFDM) symbols based on an identifier associated with the base station and the second set of resources is multiplexed into a second set of OFDM symbols. Upon receiving the subframe, a wireless communication device determines which set of transmission resources contains the PRS based on the identifier associated with the base station that transmitted the subframe and processes the set of resources containing the PRS to estimate timing (e.g., time of arrival) information.
Abstract:
A wireless communication relay terminal including a controller coupled to a transceiver wherein the controller is configured to cause the transceiver to transmit a first portion of a first sub-frame during a first time-frequency region to a wireless communication device, to cause the transceiver to receive, from a base station, a portion of a second sub-frame during a second time-frequency region wherein the first and second time-frequency regions are non-overlapping The controller is also configured to detect a control region within the portion of the second sub-frame received by attempting to decode information in a possible control region of the second sub-frame having at least one of several possible starting locations that are known a priori by the terminal.
Abstract:
A wireless communications system base station (101), upon receiving (202) from a mobile station (102) a wireless transmission that comprises a suggested transmitter-receiver configuration, can respond (in appropriate instances) by automatically transmitting (203) to the mobile station a wireless transmission comprising an indication to use instead a default transmitter-receiver configuration. By one approach, the latter action can be based, at least in part, upon a determination regarding reliability (301) of that suggested transmitter-receiver configuration (which might comprise, for example, a direct or indirect measure of quality of the channel by the default transmitter-receiver configuration was received) to provide a corresponding reliability assessment. The latter can then be used (302) to determine whether to use this suggested transmitter-receiver configuration for a subsequent communication with the mobile station.
Abstract:
Mobile units in a multicarrier, multidimensional communications system can assess their own channel coherence time attributes (base stations can also access such dynamics for mobile units as well). This information is utilized (either by the mobile unit itself or by an infrastructure component such as a base site) to determine a level of trustworthiness for other channel quality data as might be measured by the mobile unit. Different modulation and coding schemes, along with responsive frequency and time diversity resource allocations, are adaptively selected as a function of this level of trustworthiness.