Abstract:
An apparatus and method for performing sequential scheduling in a multiple-input, multiple-output (MIMO) system is provided. The method includes the steps of: selecting a user which reports the greatest partial feedback information among a plurality of pieces of partial feedback information of all users in an initialization operation, and requesting channel feedback information to the selected user; and broadcasting the channel feedback information of the selected user to remaining unselected users upon receiving the channel feedback information from the selected user. Accordingly, a maximum capacity can be obtained by using only selective channel feedback information without having to feed back channel state information of all users.
Abstract:
A developing unit provided in an image forming apparatus includes a regulating member that improves developer layer regulation performance. The developing unit is configured to feed developer to a photoconductor, on which an electrostatic latent image is formed, to form an image. The regulating member of the developing unit includes a bending portion contacting an outer peripheral surface of a developing device provided in a frame of the developing unit. The width of the regulating member is variable to increase rearward from the bending portion. The regulating member may further include an extension portion extending from the bending portion. Sealing members may be attached to both ends of the frame of the developing unit so as to contact the respective ends of the bending portion.
Abstract:
An actuator used with an optical pickup includes: a base on which a holder is fixed; a lens holder in which a plurality of installation holes are formed such that a plurality of objective lenses to record and/or reproduce optical discs having different recording densities are installed at different heights; a support member, which movably supports the lens holder, having one end coupled to the lens holder and the other end coupled to the holder; and a magnetic circuit which drives the lens holder in focusing and tracking directions. The plurality of installation holes include a first installation hole in which a first objective lens for at least one type of low density optical disc is installed, and a second installation hole in which a second objective lens for a higher density optical disc than the low density optical disc is installed. When a working distance of the first objective lens for the low density optical disc installed in the first installation hole is represented as WD1, and a working distance of the second objective lens for the high density optical disc installed in the second installation hole is represented as WD2, the first and second installation holes are provided so that the first and second objective lenses are installed to satisfy the Equation: WD1≧WD2, a separation distance between the optical disc and the second objective lens=WD2+α where, α=|WD1−WD2|×(0.1˜1.0). The second installation hole is located in a more outer circumference of the optical disc than the first installation hole.
Abstract:
A resource allocation method in a multiuser-multiple-input multiple-output/orthogonal frequency division multiple access (MIMO/OFDMA) system. In the multiuser-MIMO/OFDMA system feedback information is received from terminals. A channel gain and a transmission rate for each user are determined using the feedback information. An average channel gain for each user is computed according to the channel gain. The average number of bits for each user is determined according to the average channel gain. The number of subchannels for each user is computed according to the average number of bits for each user. At least one subchannel is allocated to each user according to the number of subchannels for each user. A modulation scheme for each of the at least one subchannel is determined. The resource allocation method adaptively allocates subchannels and bits according to channel environment, thereby considerably improving frequency use efficiency as well as a power gain.
Abstract:
A disk cartridge includes a case which receives a disk thereon, a cover which is installed on the case and includes an opening, and a shutter which is movably installed in the case, in a lower direction of the disk, to open and close an aperture formed on the case. The disk cartridge has guide holes formed on the case along a trace of the shutter, and support members formed on the shutter. The support members are guided along the guide holes while having ends thereof interfering with peripherals of the guide holes. Therefore, since the peripherals of the guide holes interfere with the ends of the support members, the shutter is prevented from being deformed even where an external force is applied to the shutter through the aperture, in a closed state of the shutter.
Abstract:
Disclosed is a method for adaptively allocating frequency resources in a communication system using an orthogonal frequency division multiple access scheme. The method for allocating frequency resources in the communication system that includes a plurality of cells using an identical frequency band includes the steps of dividing a frequency band used in the communication system into sub-frequency bands corresponding to a number of cells, and allocating one of the sub-frequency bands to each of mobile subscriber stations exiting in the cells according to positions of the mobile subscriber stations, thereby increasing the degree of the freedom for frequency resource allocation and minimizing ICI.
Abstract:
An adaptive RAKE receiving apparatus is constrained with at least one constraint for use in a mobile communication system. The apparatus includes an input signal generator for generating a complex received signal by gathering multi-path components during a corresponding transmitting signature; adaptive filters for filtering the complex received signal based on a tab weight that is adjusted at a predetermined period; channel estimators for estimating a phase component and an amplitude component of a particular user channel by using the filtered signals to generate channel estimating result signals; a signal recovering unit for recovering an original signal, which was transmitted from a particular user, by combining the filtered signals for all multi-path components and the channel estimating result signals; selecting unit for selecting one between a predetermined trained data signal and the recovered signal from the signal recovering unit; a reference signal generator for generating a reference signal by using the selected signal and the channel estimation result signal; an error calculator for comparing the filtered received signal with the reference signal to calculate error between these compared two signals; and a tap coefficient adjuster for adjusting tap coefficients of the adaptive filtering unit based on MMSE (Minimum Mean Square Error) criterion with at least one constraint.
Abstract:
Provided is a communication adapter switching method and apparatus in a system having a plurality of communication adapters. The method includes: setting the addresses of the plurality of communication adapters equal to the address of the first of the plurality of communication adapters; setting a packet filtering mode of the communication adapters other than the first communication adapter to a mode in which all packets are accepted; and switching from one of the communication adapters to another when the one communication adapter is disconnected during communication. Accordingly, seamless handoff from the wired LAN to the wireless LAN is possible, since the TCP/IP session is maintained with the same IP address.
Abstract:
In a method for feeding back combination information of transmitted signals in a multiple-input multiple-output (MIMO) system using a multiple space-time block coding technique, mean square error values are computed in relation to the combination information pieces of the transmitted signals. An index of a combination having a minimum mean square error value from among the mean square error values is fed back.
Abstract:
A pilot designing method in an uplink OFDMA system is provided. In the uplink OFDMA system, communications are carried out in a frame divided into time-frequency lattices, and each time-frequency lattice includes a plurality of data symbol periods and a plurality of pilot symbol periods intermittently arranged with respect to the data symbol periods. The frame is divided into a plurality of blocks. The blocks are allocated to the terminals. A predetermined allocated pilot time-frequency lattice is shared between adjacent terminals.