Abstract:
A pumping light source unit for Raman amplification includes at least one pumping light source that outputs a first pumping light covering a current amplification band; at least one additional pumping light source that outputs a second pumping light covering an amplification band to be extended; and a setting control unit that controls a setting for a gain of an entire amplification band by resetting outputs of the first pumping light and the second pumping light. The pumping light source unit has a function of extending the amplification band in a stepwise manner.
Abstract:
In a Raman amplifier using three or more pumping wavelengths, when the pumping wavelengths are divided into a short wavelength side group and a long wavelength side group at the boundary of the pumping wavelength having the longest interval between the adjacent wavelengths, the short wavelength side group includes two or more pumping wavelengths having intervals therebetween which are substantially equidistant, and the long wavelength side group is constituted by two or less pumping wavelengths. When a certain pumping wavelength is defined as a first channel and pumping wavelengths which are spaced apart from each other by about 1 THz from the certain pumping wavelength toward a long wavelength side are defined as second to n-th channels, respectively, pump lights having wavelengths corresponding to the first to n-th channels are multiplexed, and pump light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the long wavelength side is further multiplexed with the said multiplexed pump light, and resultant pump light is used as pump source. Pump lights of all of the wavelengths corresponding to the channels other than (n−1)th and (n−2)th channels are multiplexed with each other, and resultant pump light is used as pump source. Pump lights of all of the wavelengths corresponding to the channels other than (n−2)th and (n−3)th channels are multiplexed with each other, and resultant pump light is used as pump source.
Abstract:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−1)-th and (n−2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−2)-th and (n−3)-th channels may be multiplexed, thereby forming the pumping light source.
Abstract:
A tunable multimode wavelength division multiplex Raman pump and amplifier, and a system, method, and computer program product for controlling a tunable Raman pump and amplifier. The tunability of the pump source is accomplished by either straining or heating an external fiber grating, thereby causing a different wavelength of light to be emitted by the pump source. The system includes a microprocessor-based controller that monitors an amplifier's performance and adjusts the drive current and/or wavelength of the tunable pumps of an amplifier to achieve a target performance.
Abstract:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−1)-th and (n−2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−2)-th and (n−3)-th channels may be multiplexed, thereby forming the pumping light source.
Abstract:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−1)-th and (n−2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−2)-th and (n−3)-th channels may be multiplexed, thereby forming the pumping light source.
Abstract:
First pump light for Raman-amplifying optical signal is inputted to the output end of the optical signal, and second pump light used for Raman-amplifying the first pump light and having a wavelength shorter than that of the first pump light is inputted to the input end of the optical signal. The second pump light is also inputted to the output end of the optical signal. The first pump light is also inputted to the input end of the optical signal. The Raman amplification band of the second pump light is made not to be overlapped with that of the optical signal. The wavelength of the second pump light is shorter than that of the first pump light by the Raman shift of the amplifier fiber. The light source of either the first or second pump light or both the light sources of them are multiplex optical sources. The first pump light is emitted from a semiconductor laser. Third pump light for Raman-amplifying the second pump light is directed to an optical transmission line. The optical signal is transmitted through a transmission line using the Raman amplification method.
Abstract:
A Raman amplifier, system and method using a plurality of pumps configured to pump light into an optical fiber so as to Raman-amplify an optical signal propagating through the optical fiber. The Raman amplifier also includes an optical coupler configured to optically interconnect the pumping device with the optical fiber, and a control unit configured to control the pumping device so as to achieve a target amplification performance. Further, the control unit monitors the Raman-amplified WDM signal and determines if the monitored Raman-amplified WDM signal is within an allowable tolerance of the target amplification performance. If the Raman-amplified signal is not within the allowable tolerance, the control unit actively controls the pumps to bring the monitored Raman-amplified signal within the allowable tolerance of the target amplification profile.
Abstract:
Wavelength multiplex transmission is realized in which the temperature dependency of an EDFA is compensated for in relation to the wavelengths which are used. A first and a second long-period grating which have different periods from each other are formed in an optical fiber, ensuring that the peak wavelength of a waveform representing an optical transmission loss characteristic of the first long-period grating side is located on the shorter wavelength side than a transmission band and a peak wavelength of a waveform representing an optical transmission loss characteristic of the second long-period grating side is located on the longer wavelength side within the transmission band.
Abstract:
A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-1)-th and (n-2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-2)-th and (n-3)-th channels may be multiplexed, thereby forming the pumping light source.