Raman amplifier
    42.
    发明授权

    公开(公告)号:US06882468B2

    公开(公告)日:2005-04-19

    申请号:US10663829

    申请日:2003-09-17

    Abstract: In a Raman amplifier using three or more pumping wavelengths, when the pumping wavelengths are divided into a short wavelength side group and a long wavelength side group at the boundary of the pumping wavelength having the longest interval between the adjacent wavelengths, the short wavelength side group includes two or more pumping wavelengths having intervals therebetween which are substantially equidistant, and the long wavelength side group is constituted by two or less pumping wavelengths. When a certain pumping wavelength is defined as a first channel and pumping wavelengths which are spaced apart from each other by about 1 THz from the certain pumping wavelength toward a long wavelength side are defined as second to n-th channels, respectively, pump lights having wavelengths corresponding to the first to n-th channels are multiplexed, and pump light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the long wavelength side is further multiplexed with the said multiplexed pump light, and resultant pump light is used as pump source. Pump lights of all of the wavelengths corresponding to the channels other than (n−1)th and (n−2)th channels are multiplexed with each other, and resultant pump light is used as pump source. Pump lights of all of the wavelengths corresponding to the channels other than (n−2)th and (n−3)th channels are multiplexed with each other, and resultant pump light is used as pump source.

    Raman amplifier, optical repeater, and raman amplification method

    公开(公告)号:US06775057B2

    公开(公告)日:2004-08-10

    申请号:US10120173

    申请日:2002-04-11

    Abstract: A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−1)-th and (n−2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−2)-th and (n−3)-th channels may be multiplexed, thereby forming the pumping light source.

    Raman amplifier, optical repeater, and Raman amplification method

    公开(公告)号:US06654162B2

    公开(公告)日:2003-11-25

    申请号:US09886212

    申请日:2001-06-22

    Abstract: A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−1)-th and (n−2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−2)-th and (n−3)-th channels may be multiplexed, thereby forming the pumping light source.

    Raman amplifier, optical repeater, and raman amplification method

    公开(公告)号:US06636344B2

    公开(公告)日:2003-10-21

    申请号:US09944601

    申请日:2001-09-04

    Abstract: A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−1)-th and (n−2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n−2)-th and (n−3)-th channels may be multiplexed, thereby forming the pumping light source.

    Raman amplification method and optical signal transmission method using same
    47.
    发明授权
    Raman amplification method and optical signal transmission method using same 有权
    拉曼放大法和光信号传输法使用相同

    公开(公告)号:US06633697B2

    公开(公告)日:2003-10-14

    申请号:US09774026

    申请日:2001-01-31

    CPC classification number: H04B10/2916 H01S3/094011 H01S3/302

    Abstract: First pump light for Raman-amplifying optical signal is inputted to the output end of the optical signal, and second pump light used for Raman-amplifying the first pump light and having a wavelength shorter than that of the first pump light is inputted to the input end of the optical signal. The second pump light is also inputted to the output end of the optical signal. The first pump light is also inputted to the input end of the optical signal. The Raman amplification band of the second pump light is made not to be overlapped with that of the optical signal. The wavelength of the second pump light is shorter than that of the first pump light by the Raman shift of the amplifier fiber. The light source of either the first or second pump light or both the light sources of them are multiplex optical sources. The first pump light is emitted from a semiconductor laser. Third pump light for Raman-amplifying the second pump light is directed to an optical transmission line. The optical signal is transmitted through a transmission line using the Raman amplification method.

    Abstract translation: 用于拉曼放大光信号的第一泵浦光被输入到光信号的输出端,并且用于拉曼放大第一泵浦光并且具有比第一泵浦光的波长短的波长的第二泵浦光被输入到输入 结束光信号。 第二泵浦光也被输入到光信号的输出端。 第一泵浦光也被输入到光信号的输入端。 第二泵浦光的拉曼放大频带不与光信号的拉曼放大频带重叠。 第二泵浦光的波长通过放大器光纤的拉曼偏移比第一泵浦光的波长短。 第一或第二泵浦光或其两个光源的光源是多路光源。 第一泵浦光从半导体激光器发射。 用于拉曼放大第二泵浦光的第三泵浦光被引导到光传输线。 光信号通过使用拉曼放大法的传输线传输

    Raman amplifier system, apparatus and method for identifying, obtaining and maintaining an arbitrary Raman amplification performance
    48.
    发明授权
    Raman amplifier system, apparatus and method for identifying, obtaining and maintaining an arbitrary Raman amplification performance 有权
    拉曼放大器系统,用于识别,获得和维持任意拉曼放大性能的装置和方法

    公开(公告)号:US06611370B2

    公开(公告)日:2003-08-26

    申请号:US09775632

    申请日:2001-02-05

    Abstract: A Raman amplifier, system and method using a plurality of pumps configured to pump light into an optical fiber so as to Raman-amplify an optical signal propagating through the optical fiber. The Raman amplifier also includes an optical coupler configured to optically interconnect the pumping device with the optical fiber, and a control unit configured to control the pumping device so as to achieve a target amplification performance. Further, the control unit monitors the Raman-amplified WDM signal and determines if the monitored Raman-amplified WDM signal is within an allowable tolerance of the target amplification performance. If the Raman-amplified signal is not within the allowable tolerance, the control unit actively controls the pumps to bring the monitored Raman-amplified signal within the allowable tolerance of the target amplification profile.

    Abstract translation: 一种拉曼放大器,使用多个泵的系统和方法,所述多个泵被配置为将光泵送到光纤中,以便对通过光纤传播的光信号进行拉曼放大。 所述拉曼放大器还包括被配置为将所述泵送装置与所述光纤互连的光耦合器,以及被配置为控制所述泵送装置以实现目标放大性能的控制单元。 此外,控制单元监视拉曼放大的WDM信号,并确定所监视的拉曼放大的WDM信号是否在目标放大性能的允许容限之内。 如果拉曼放大的信号不在允许的容限范围内,则控制单元主动地控制泵将被监测的拉曼放大信号置于目标放大曲线的允许容限之内。

    Raman amplifier, optical repeater, and Raman amplification method
    50.
    发明授权
    Raman amplifier, optical repeater, and Raman amplification method 有权
    拉曼放大器,光中继器和拉曼放大法

    公开(公告)号:US07692852B2

    公开(公告)日:2010-04-06

    申请号:US11689352

    申请日:2007-03-21

    Abstract: A Raman amplifier according to the present invention comprises a plurality of pumping means using semiconductor lasers of Fabry-Perot, DFB, or DBR type or MOPAs, and pumping lights outputted from the pumping means have different central wavelengths, and interval between the adjacent central wavelength is greater than 6 nm and smaller than 35 nm. An optical repeater according to the present invention comprises the above-mentioned Raman amplifier and adapted to compensate loss in an optical fiber transmission line by the Raman amplifier. In a Raman amplification method according to the present invention, the shorter the central wavelength of the pumping light the higher light power of said pumping light. In the Raman amplifier according to the present invention, when a certain pumping wavelength is defined as a first channel, and second to n-th channels are defined to be arranged with an interval of about 1 THz toward a longer wavelength side, the pumping lights having wavelengths corresponding to the first to n-th channels are multiplexed, and an pumping light having a wavelength spaced apart from the n-th channel by 2 THz or more toward the longer wavelength side is combined with the multiplexed light, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-1)-th and (n-2)-th channels may be multiplexed, thereby forming the pumping light source. The pumping lights having wavelengths corresponding to the channels other than (n-2)-th and (n-3)-th channels may be multiplexed, thereby forming the pumping light source.

    Abstract translation: 根据本发明的拉曼放大器包括使用Fabry-Perot,DFB或DBR型或MOPA的半导体激光器的多个泵浦装置,并且从泵送装置输出的泵浦光具有不同的中心波长,并且相邻中心波长 大于6nm且小于35nm。 根据本发明的光中继器包括上述拉曼放大器,并且用于补偿拉曼放大器在光纤传输线路中的损耗。 在根据本发明的拉曼放大方法中,泵浦光的中心波长越短,所述泵浦光的光功率越高。 在根据本发明的拉曼放大器中,当将一定的泵浦波长定义为第一通道时,并且将第二至第n通道限定为朝向较长波长侧以大约1THz的间隔布置,泵浦灯 具有对应于第一至第n通道的波长的多路复用,并且将具有与第n个信道间隔开2波长或更长的波长朝向较长波长侧的波长的泵浦光与多路复用光组合,从而形成泵浦 光源。 具有与第(n-1)和(n-2)通道以外的通道对应的波长的泵浦光可以被多路复用,从而形成泵浦光源。 具有与第(n-2)和(n-3)通道以外的通道对应的波长的泵浦光可以被多路复用,从而形成泵浦光源。

Patent Agency Ranking