Abstract:
An electrode lead of a pacemaker includes a lead wire. The lead wire includes at least one sub-lead wire and an electrode head electrically connected with the lead wire. The sub-lead wire includes a core wire structure and a carbon nanotube composite structure wound around the core wire structure. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
Abstract:
A pacemaker is provided. The pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and at least one carbon nanotube structure located in the matrix. A first end of each carbon nanotube structure protrudes out of a first surface of the matrix for stimulating the human tissue, and a second end of each carbon nanotube structure protrudes out of a second surface of the matrix to electrically connect to the lead.
Abstract:
A pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and a carbon nanotube structure located in the matrix. The matrix comprises a first surface and a second surface substantially perpendicular to the first surface. The carbon nanotube structure includes a first end electrically connect to the lead. The carbon nanotube structure is substantially parallel to the second surface of the matrix. A distance between the carbon nanotube structure and the second surface of the matrix is less than 10 micrometers.
Abstract:
A method for making a carbon nanotube film structure is related. A rotator having an axis and a rotating surface is provided. A carbon nanotube film drawn from a carbon nanotube array is adhered on the rotating surface of the rotator. The rotator is rotated about the axis to wrap the carbon nanotube film on the rotating surface of the rotator to form a carbon nanotube layer. The carbon nanotube layer is cut along a direction to form the carbon nanotube film structure.
Abstract:
An electrode lead of a pacemaker includes a metal conductive core, a carbon nanotube film, and an insulator. The metal conductive core defines an extending direction. The carbon nanotube film at lest partially surrounds the metal conductive core and is electrically insulated from the metal conductive core. The insulator is located between the metal conductive core and the carbon nanotube film. The carbon nanotube film includes a plurality of carbon nanotubes substantially extending along the extending direction of the metal conductive core. A bared part is defined at one end of the electrode lead. A pacemaker using the above mentioned electrode lead is also disclosed.
Abstract:
An electrode lead of a pacemaker includes a lead wire. The lead wire includes at least one sub-lead wire and an electrode head electrically connected with the lead wire. The sub-lead wire includes a core wire structure and a carbon nanotube composite structure wound around the core wire structure. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
Abstract:
A shutter blade is provided. The shutter blade includes a carbon nanotube structure and a polymer. The carbon nanotube structure includes a plurality of carbon nanotubes joined by van der Waals force. A camera shutter using the shutter blade is also provided. The camera shutter includes a blade structure, two drive units, a substrate defining an aperture, and a connection unit located on the substrate. The blade structure is connected with the connection unit and controls the aperture to be covered or uncovered. The blade structure includes at least two the above-mentioned shutter blades. The drive units are located on a same side of the substrate and configured to drive the blade structure to rotate clockwise or counterclockwise.
Abstract:
A carbon nanotube film supporting structure is provided. The carbon nanotube film supporting structure is used for supporting a carbon nanotube film structure. The carbon nanotube film supporting structure includes a substrate and a number of protruding structures. The substrate has a surface defining a support region. The protruding structures are distributed on the support region. The carbon nanotube film structure can be peeled off completely after being in contact with the carbon nanotube film supporting structure. The present disclosure also relates to a method for using the carbon nanotube film supporting structure.
Abstract:
A transmission electron microscope (TEM) micro-grid includes a base and a plurality of electron transmission portions. The base includes a plurality of first carbon nanotubes and the first carbon nanotubes have a first density. Each electron transmission portions includes a hole defined in the base and a plurality of second carbon nanotubes located in the hole. The second carbon nanotubes have a second density. The second density is less than the first density. The base and the electron transmission portions form the TEM micro-grid for observation of a sample using a TEM microscope.
Abstract:
The present disclosure provides a digital sound projector including a first flat speaker, a second flat speaker, a connecting device and a signal input device. The connecting device pivotally connects the first flat speaker and the second flat speaker to form an angle between a surface of the first flat speaker and a surface of the second flat speaker. The angle is larger than 0 degrees and smaller than 180 degrees. The signal input device inputs electrical signals to each of the first and the second flat speakers.