Abstract:
Aspects of the subject technology relate to electronic devices having a display. The display includes a channel of light emitting diodes (LEDs) having controllable brightness levels and control circuitry coupled to the channel of LEDs. The control circuitry provides a pulse width modulated (PWM) signal having a duty cycle to control the brightness levels. An adaptive headroom control circuitry is configured to sense a headroom voltage signal for the channel of LEDs and apply a first time period for blanking the headroom voltage signal during the first time period that is associated with a settling time for the headroom voltage signal.
Abstract:
A wireless power system includes an electrically-balanced inductor in a transmitter device and an electrically-balanced inductor in a receiver device. The electrically-balanced inductors can be formed by introducing crossovers between radially-adjacent portions of two separate turns of each inductor. The crossovers balance the electric field generated by the transmitter device when transferring power to the receiver device.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may include a feedforward loop and a feedback loop for a power supply for the light-emitting diodes. The light-emitting diodes may be arranged in strings that are individually controllable by a current control transistor on the string. The feedforward loop may determine a total upcoming load current for the power supply based on reference voltages for controlling each of the current control transistors. The output of the power supply may be modified based on a combination of a current from the feedforward loop and a current from the feedback loop.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may operate a light-emitting diode using a multi-peak pulse-width-modulation signal. The control circuitry may include a multi-stage driver having a relatively larger driver stage for providing a direct current through a light-emitting diode and a relatively smaller driver stage configured to cooperate with a pulse-width-modulation controller to pulse-width-modulate a current through the light-emitting diode.
Abstract:
A wireless power system includes an electrically-balanced inductor in a transmitter device and an electrically-balanced inductor in a receiver device. The electrically-balanced inductors can be formed by introducing crossovers between radially-adjacent portions of two separate turns of each inductor. The crossovers balance the electric field generated by the transmitter device when transferring power to the receiver device.
Abstract:
Various systems, apparatuses, and methods are disclosed herein, which provide a new power conversion topology for isolated systems that does not include a transformer. Embodiments of the inventive systems comprise: a switching system utilizing high voltage, low leakage switches, e.g., Silicon Carbide (SiC) MOS-FETs; a power source; an inductor and a capacitor operating as a link stage resonant LC circuit; and a load. The switching system may be configured to be controlled in a synchronized ‘four phase’ control loop process, wherein the input switches are prevented from being closed at the same time as the output switches, thereby providing electrical isolation between the input power source and the load—without the use of a transformer. The techniques disclosed herein are applicable to any number of isolated systems that supply power to electronic systems such as: digital cameras, mobile phones, watches, personal data assistants (PDAs), portable music players, displays, and computers.
Abstract:
A system may include a processor, a graphics controller, and a display. The graphics controller may generate video data to be presented on the display. The display may include a display panel, a backlight unit for providing the display panel with backlight, and a display timing controller for communicating with the graphics controller. The display may be used in non-movie mode and movie mode. The backlight unit may be operated in fixed backlight mode during the non-movie display mode and may be operated in dynamic pixel backlight (DPB) mode during the movie display mode. Backlight level adjustments may be sloped only during the non-movie mode. Backlight level sloping can be handled internally within the backlight unit, can be controlled using pulse width modulation with the display timing controller, and implemented using incremental backlight level adjustments with the processor.
Abstract:
A measured voltage drop across a power-line transistor is used as a sensing element to measure the current and detect an over-current condition for an LED backlight system. An over-current or short condition is detected when the measured voltage drop exceeds a threshold. Accurate detection of the over-current condition is achieved by calibrating the RDS-ON (i.e., internal resistance between drain and source, when transistor is on) of the power-line transistor. In one embodiment, the calibration of RDS-ON is performed by ramping down the threshold from an initial value and using the tripped threshold to determine the actual value for RDS-ON. In another embodiment, the calibration of RDS-ON is performed by using two thresholds, a first threshold to calibrate RDS-ON and a second threshold to detect the over-current condition.
Abstract:
Systems and methods for light-load efficiency in displays may include a backlight driver circuit that may adjust a gate drive voltage provided to a gate of a metal-oxide-semiconductor field-effect transistor (MOSFET) in the boost converter based on the load conditions of light-emitting diodes used to illuminate the display panel. The backlight driver circuit may also switch between two different voltage sources to further broaden a range of gate drive voltages available to drive the gate of the MOSFET in the boost converter. As a result, the backlight driver circuit may decrease gate drive losses associated with the MOSFET, thereby increasing the efficiency of the boost converter.
Abstract:
A portable computer includes a display portion comprising a display and a base portion pivotally coupled to the display portion. The base portion may include a bottom case and a top case, formed from a dielectric material, coupled to the bottom case. The top case may include a top member defining a top surface of the base portion and a sidewall integrally formed with the top member and defining a side surface of the base portion. The portable computer may also include a sensing system including a first sensing system configured to determine a location of a touch input applied to the top surface of the base portion and a second sensing system configured to determine a force of the touch input.