Abstract:
A display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor (TFT) layer. The TFT layer may include thin-film transistors formed on top of a glass substrate. A passivation layer may be formed on the thin-film transistor layers. A first low-k dielectric layer may be formed on the passivation layer. Data line routing structures may be formed on the first low-k dielectric layer. A second low-k dielectric layer may be formed on the first low-k dielectric layer. A common voltage electrode and associated storage capacitance may be formed on the second low-k dielectric layer. The first and second low-k dielectric, layers may be formed from material having substantially similar refractive indices to maximize backlight transmittance and may have appropriate thicknesses so as to minimize parasitic capacitive loading.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor (TFT) layer. The TFT layer may include thin-film transistors formed on top of a glass substrate. A passivation layer may be formed on the thin-film transistor layers. An oxide liner may be formed on the passivation layer. A first low-k dielectric layer may be formed on the oxide liner. A second low-k dielectric layer may be formed on the first low-k dielectric layer. A common voltage electrode and associated storage capacitance may be formed on the second low-k dielectric layer. Thin-film transistor gate structures may be formed in the passivation layer. Conductive routing structures may be formed on the oxide liner, on the first low-k dielectric layer, and on the second low-k dielectric layer. The use of routing structures on the oxide liner reduces overall routing resistance and enables interlaced metal routing, which can help reduce the inactive border area outside the active display regions.
Abstract:
A display may have an array of display pixels. The array may have rows. Each row of the display pixels may receive gate lines signals on a respective gate line. Gate driver circuitry may be used to drive gate line signals onto the gate lines. Each gate line may be coupled to a logic gate in the gate driver circuitry. The logic gates may each be coupled to a respective latch. A termination block in the gate driver circuitry may have a termination block latch and a termination block logic gate. Signal lines may be used to distribute clock signals from display driver circuitry to the logic gates. Respective signal lines may also be used to distribute a pixel charging initiation signal to a latch in the first row of the array and a pixel charging termination signal to the termination block latch.
Abstract:
A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
Abstract:
Electronic devices may include displays having organic light-emitting diode pixels, display driver circuitry, and gate driver circuitry. To reduce the amount of space occupied in the inactive area of a display by the gate driver circuitry, one or more of the shift registers in the gate driver circuitry may include register circuits that are shared by multiple rows of pixels. Different drivers may use different clock frequencies to ensure synchronous operation of the display even when some register circuits share pixel rows. For increased flexibility in the arrangement of the register circuits in the shift registers, one or more of the shift registers may be split across the active area of the display. In some cases, one of the emission drivers may be omitted from the gate driver circuitry and a single emission driver may provide multiple emission control signals for the pixels.
Abstract:
An electronic device display may have a color filter layer, a thin-film-transistor layer, and a layer of liquid crystal material. The display may have a display cover layer such as a layer of glass or plastic. Adhesive may be used to attach the upper polarizer to the display cover layer. The thin-film transistor layer may have a substrate with upper and lower surfaces. Thin-film-transistor circuitry may be formed on the upper surface. A display driver integrated circuit may be mounted to the lower surface or a flexible printed circuit and may be coupled to the thin-film-transistor circuitry using wire bonding wires. Through vias that are formed through the thin-film-transistor layer substrate may be used in coupling the thin-film-transistor circuitry to the display driver integrated circuit.
Abstract:
The border routing of conductive traces in devices, such as displays, touch sensor panels, and touch screens, to improve border area space usage, thereby reducing device size, and to reduce trace resistance, thereby improving device operation, is disclosed. The conductive traces can form a staggered stair-step configuration in the device border area, in which the average widths of the traces can be different from each other and each trace can have segments with different widths. The conductive traces can be coupled to an active area of the device to transmit signals to and from the active area in accordance with a device operation. The varying widths can help improve the border area space usage, reduce trace resistance, and reduce the differences in resistance between traces.
Abstract:
A display may have a thin-film transistor layer and color filter layer. The display may have an active area and an inactive border area. Light blocking structures in the inactive area may prevent stray backlight from a backlight light guide plate from leaking out of the display. The thin-film transistor layer may have a clear substrate, a patterned black masking layer on the clear substrate, a clear planarization layer on the black masking layer, and a layer of thin-film transistor circuitry on the clear planarization layer. The black masking layer may be formed from black photoimageable polyimide. The clear planarization layer may be formed from spin-on glass. The light blocking structures may include a first layer formed from a portion of the black masking layer and a second layer such as a layer of black tape on the underside of the color filter layer.
Abstract:
An electronic device display may have an array of display pixels that are controlled using a grid of data lines and gate lines. The display may include compact gate driver circuits that perform gate driver operations to drive corresponding gate lines. Each compact gate driver circuit may include a first driver stage and a second driver stage. The first driver stage may receive a start pulse signal and produce a control signal. The control signal may be stored by a capacitor to identify a control state of the gate driver circuit. The second driver stage may receive the control signal, a clock signal, and a corresponding inverted clock signal and drive the corresponding gate line based on the received signals. The second driver stage may include pass transistor circuitry that passes the clock signal to the corresponding gate line and may include short circuit protection circuitry.
Abstract:
A display may be provided with an active central region and a peripheral inactive region. The display may have one or more flexible edges in the peripheral inactive region. Conductive lines may pass between components in the active central region such as display pixels and touch sensor electrodes and components in the inactive peripheral region such as gate driver circuitry and patterned interconnect lines. Each conductive line may have an unbent segment on a portion of a display layer in the active central region and may have a segment on the bent edge of the display layer. The display layer may be formed from a polymer or other flexible material. The bent segments may be configured to be less susceptible to increases in resistance from bending than the unbent segments.