Abstract:
A display device includes: a display region and a sealing region; a first substrate; a second substrate opposite to the first substrate; a sealing member in the sealing region between the first substrate and the second substrate; and a first conductive member overlapping the sealing member and passing through the first substrate and the sealing member.
Abstract:
According to one embodiment, a display device includes a first substrate, a second substrate, a display function layer, and a connecting material. The first substrate includes a first basement and a first conductive layer. The second substrate includes a second basement including a first hole, a first projection formed on an inner circumferential surface of the first hole, and a second conductive layer. The connecting material covers a surface of the first hole including the first projection and electrically connects the first conductive layer and the second conductive layer.
Abstract:
The present disclosure provides, for realization of a flexible display apparatus capable of implementing a slim bezel and a method of manufacturing the same, a flexible display apparatus including: a flexible substrate including a first area having a first hole, a second area having a second hole and arranged corresponding to the first area, and a third area between the first area and the second area; a first wiring covering the first hole and arranged in the first area; and a second wiring covering the second hole, arranged in the second area, and electrically connected to the first wiring via the first hole and the second hole.
Abstract:
The invention provides a display device, which employs ultra-thin flexible substrate with WOA disposed on both sides of the flexible substrate, wherein the WOA on the front side is directly connected to the active area, and the WOA on the back side passes through the holes in the flexible substrate to extend to the front side to connect to the active area. As such, the circuit area utilization is improved so that the same size of substrate area can carry almost twice the circuit structure to reduce the border width of the non-active area to achieve borderless or ultra-narrow borders.
Abstract:
An electronic device display may have a color filter layer, a thin-film-transistor layer, and a layer of liquid crystal material. The display may have a display cover layer such as a layer of glass or plastic. Adhesive may be used to attach the upper polarizer to the display cover layer. The thin-film transistor layer may have a substrate with upper and lower surfaces. Thin-film-transistor circuitry may be formed on the upper surface. A display driver integrated circuit may be mounted to the lower surface or a flexible printed circuit and may be coupled to the thin-film-transistor circuitry using wire bonding wires. Through vias that are formed through the thin-film-transistor layer substrate may be used in coupling the thin-film-transistor circuitry to the display driver integrated circuit.
Abstract:
An electronic device may have a display mounted in a housing. The display may have layers such as polarizer layers, a color filter layer, and a thin-film transistor layer. Display layers such as color filter layers and thin-film-transistor layers may have glass substrates. Notches or other openings may be formed in the layers of a display. For example, a notch with a curved chamfered edge may be formed in a lower end of a thin-film-transistor layer. A component such as a button may overlap the notch. Structures such as sensors, cameras, acoustic components, and other electronic components, buttons, communications path structures such as flexible printed circuit cables and wire bonding wires, and housing structures may be received within a display layer notch.
Abstract:
A display device includes a plurality of gate lines extending in a first direction on the display area, a plurality of source lines extending in a second direction, a plurality of lead-out lines extending in the second direction and for transmitting gate signals to the plurality of gate lines. A plurality of connecting portions each electrically connects one gate line to one lead-out line. The plurality of connecting portions pass through a first insulating layer at a plurality of jointing points which are selected among a plurality of overlapping points where the plurality of lead-out lines and the plurality of gate lines overlap in a plane area.
Abstract:
A conducting film or device multilayer electrode includes a substrate and two transparent or semitransparent conductive layers separated by a transparent or semitransparent intervening layer. The intervening layer includes electrically conductive pathways between the first and second conductive layers to help reduce interfacial reflections occurring between particular layers in devices incorporating the conducting film or electrode.
Abstract:
A charge-receiving layer for an e-paper assembly includes a plurality of conductive paths spaced apart throughout an insulative matrix, with each conductive path including at least one elongate pattern of conductive particles.
Abstract:
A color filter substrate comprising: a base plate; a first conductive layer formed on the base plate in a first direction; a color resistance layer formed on the first conductive layer at positions at least corresponding to pixel regions, wherein the color resistance layer is formed with via holes at positions corresponding to each sub-pixel region; a black matrix formed on the first conductive layer at positions corresponding to pixel gaps; a second conductive layer formed on the surfaces of the black matrix and the color resistance layer in a second direction different from the first direction; a dielectric layer formed at least on the second conductive layer, wherein the dielectric layer is formed with via holes corresponding to the via holes in the color resistance layer; and a third conductive layer formed on the dielectric layer and electrically connected with a corresponding portion of the first conductive layer through aligned via holes of the color resistance layer and the dielectric layer.