Abstract:
In video conferencing over a radio network, the radio equipment is a major power consumer especially in cellular networks such as LTE. In order to reduce the radio power consumption in video conferencing, it is important to introduce an enough radio inactive time. Several types of data buffering and bundling can be employed within a reasonable range of latency that doesn't significantly disrupt the real-time nature of video conferencing. In addition, the data transmission can be synchronized to the data reception in a controlled manner, which can result in an even longer radio inactive time and thus take advantage of radio power saving modes such as LTE C-DRX.
Abstract:
A method and apparatus for forced cell/RAT reselection is disclosed. In one embodiment, a cellular mobile communication device may attempt to access a network through a serving cell. Responsive to determining that access to the network is barred through the serving cell, the mobile communication device may determine if another cell is available through which it may obtain access to the network. If another cell providing network access is available, the mobile communication device may force reselection from the serving cell to the new cell. If no other cell providing access to the network is available to the mobile communication device, a forced reselection of a radio access technology may be performed.
Abstract:
Management of unwanted phone calls and/or text messages can be performed by allowing a user to create a personalized list of unwanted calls and/or text messages at the user's device and synchronizing that personalized list between a storage system in the user's device and a remote storage in a network to which the device can be coupled. In one embodiment, the remote storage can be a cloud based backup system for the user's contacts and content and the user can access a full list of the unwanted phone numbers through a web server but the full list is not accessible on the device except through a web browser that retrieves the full list from the web server.
Abstract:
Electronic devices may be provided that contain wireless communication circuitry. The wireless communication circuitry may include radio-frequency transceiver circuitry coupled to antennas by switching circuitry. Multiple radio access technologies may be supported. A device may include first and second antennas. Control circuitry can configure the transceiver circuitry and switching circuitry to support operation of the device in active and idle modes for each radio access technology. In some configurations, both antennas may be used to support operations associated with one of the radio access technologies. In other configurations, the first antenna may be used to support operations with a first of the radio access technologies while the second antenna is used to support operations with a second of the radio access technologies.
Abstract:
Avoiding conflicts between radio access technologies (RATs) in a device configured to operate according to multiple RATs. The device may be operated in a discontinuous reception (DRX) mode according to each of a first RAT and a second RAT using a shared radio. It may be determined that a conflicting wakeup time is scheduled according to DRX cycles of the first and second RATs. A subscriber identity of the device may be changed in response to determining that a conflicting wakeup time is scheduled according to DRX cycles of the first and second RATs.
Abstract:
A method for delaying network reselection by a wireless communication device following a call failure is provided. The method can include determining an initiation of a voice call while connected to a first network. The method can further include participating in a circuit switched fallback (CSFB) procedure to transition from the first network to a second network in response to initiation of the voice call. The method can additionally include determining an occurrence of a call failure of the voice call. The method can also include, responsive to the call failure, barring reselection to the first network for a threshold barring period.
Abstract:
Various systems and methods disclosed herein describe improvements for beam management that leverage virtualization across a vertical polarization (V-Pol) and horizontal polarization (H-Pol). One or more of a user equipment (UE) and a base station may include an antenna array comprising both V-Pol and H-Pol antenna elements. A UE may message a base station to configure uplink (UL) multiple input multiple output (MIMO) operations across one or more of the V-Pol and the H-Pol. The message may include a number of MIMO layers to be concurrently used for communicating data to the base station, where each MIMO layer is transmitted using one of a V-Pol and an H-Pol; a number of sounding reference signals (SRS) to be transmitted by the UE, each SRS to be transmitted using one of the V-Pol and the H-Pol; and a supported maximum number of antenna ports per each SRS.
Abstract:
A method includes receiving an indication to transmit a first set of signals using a first standard (e.g., Long Term Evolution) via a first set of antennas of a radio frequency device and a second set of signals using a second standard (e.g., New Radio) via a second set of antennas. The method also includes transmitting the first set of signals via the first set of antennas using a first power based on positions of the first set and second set of antennas, exposure conditions of the first set and the second set of signals on a user, and/or priorities of the first and the second set of signals. Moreover, the method includes transmitting the second set of signals via the second set of antennas using a second power based on the positions of the antennas, the exposure conditions of the signals on the user, and/or priorities of the signals.
Abstract:
A user equipment (UE), or other network component can operate to configure a plurality of new radio (NR) links of a E-UTRAN new radio (NR) dual connectivity (EN-DC) comprising a first radio access technologies (RAT) and a second, different RAT. A first link quality metric (LQM) evaluation of the first RAT is generated independently of generating a second LQM evaluation of the second RAT. A radio frequency (RF) interface, is configured to provide, to RF circuitry, data for a transmission of the first LQM evaluation and the second LQM evaluation based on a data split at a protocol layer so that a network component of base station can utilize the data to configure a data flow over the links based on link quality metrics provided.
Abstract:
A client device can be configured to identify data to be communicated with a network. In some examples, the client device can determine one or more transient properties of the client device and/or receive a connection request from a host device that is connected to the network, where the connection request comprises one or more connection properties of the host device. In some instances, the client device can also be configured to determine whether the host device is capable of transmitting the data to the network based at least in part on the one or more transient properties of the client device and the one or more connection properties of the host device and/or establish a connection with the host device in accordance with determining that the host device is capable of transmitting the data to the network.