Abstract:
Aspects of the subject disclosure may include, for example, a system adapted for obtaining data from electromagnetic waves propagating in a transmission medium, and transmitting a plurality of wireless optical signals including the data responsive to determining that weather conditions are favorable for transmitting wireless optical signals, each wireless optical signal being directed to a different one of a plurality of communication devices. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system for generating first electromagnetic waves and directing instances of the first electromagnetic waves to an interface of a transmission medium to induce propagation of second electromagnetic waves substantially having a non-fundamental wave mode. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a repeater device having a first coupler to extract downstream channel signals from first guided electromagnetic waves bound to a transmission medium of a guided wave communication system. An amplifier amplifies the downstream channel signals to generate amplified downstream channel signals. A channel selection filter selects one or more of the amplified downstream channel signals to wirelessly transmit to the at least one client device via an antenna. A second coupler guides the amplified downstream channel signals to the transmission medium of the guided wave communication system to propagate as second guided electromagnetic waves. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a host node device having a terminal interface that receives downstream channel signals from a communication network and send upstream channel signals to the communication network. An access point repeater launches the downstream channel signals as guided electromagnetic waves on a guided wave communication system and to extract a first subset of the upstream channel signals from the guided wave communication system. A radio wirelessly transmits the downstream channel signals to at least one client node device and to wirelessly receive a second subset of the upstream channel signals from the at least one client node device. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission medium for propagating electromagnetic waves. The transmission medium can include a conductor for guiding electromagnetic waves longitudinally along the conductor, and a shell surrounding at least a portion of the conductor for reducing exposure of the electromagnetic waves to an adverse environment that increases propagation losses of the electromagnetic waves. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system for detecting a fault in a first wire of a power grid that affects a transmission or reception of electromagnetic waves that transport data and that propagate along a surface of the first wire, selecting a backup communication medium from one or more backup communication mediums according to one or more selection criteria, and redirecting the data to the backup communication medium to circumvent the fault. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a system including a frequency mixer that combines a signal and a carrier wave to form a combined signal, and a transmitter that generates a transmission based on the combined signal. The system can also include a coupling device that emits the transmission as an electromagnetic wave guided by an outer surface of a transmission medium. The electromagnetic wave can propagate longitudinally along the surface of the transmission medium and at least partially around the surface of the transmission medium. Other embodiments are disclosed.
Abstract:
A distributed antenna and backhaul system provide network connectivity for a small cell deployment. Rather than building new structures, and installing additional fiber and cable, embodiments described herein disclose using high-bandwidth, millimeter-wave communications and existing power line infrastructure. Above ground backhaul connections via power lines and line-of-sight millimeter-wave band signals as well as underground backhaul connections via buried electrical conduits can provide connectivity to the distributed base stations. An overhead millimeter-wave system can also be used to provide backhaul connectivity. Modules can be placed onto existing infrastructure, such as streetlights and utility poles, and the modules can contain base stations and antennas to transmit the millimeter-waves to and from other modules.
Abstract:
Aspects of the subject disclosure may include, for example, a coupler that includes a tapered collar that surrounds a transmission wire. A coaxial coupler, that surrounds at least a portion of the transmission wire, guides an electromagnetic wave to the tapered collar. The tapered collar couples the electromagnetic wave to propagate along an outer surface of the transmission wire. Other embodiments are disclosed.