Abstract:
Aspects of the subject disclosure may include, for example, a guided wave switch that selectively aligns an end of the first dielectric core of a first conductorless guided wave cable with an end of a selected one of a plurality of second dielectric cores of at least one second conductorless guided wave cable to facilitate coupling of the first guided waves from the first dielectric core to a selected one of the plurality of second dielectric cores. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, an antenna system that includes a plurality of dielectric members configured to propagate first guided electromagnetic waves. A dielectric antenna array is configured to receive the first guided electromagnetic waves and to transmit a controllable beam in response thereto. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission medium having a core. A conductive layer forms an uninsulated outer surface of the transmission medium. The conductive layer is configured to impede accumulation of water to support propagation of first electromagnetic waves guided by the uninsulated outer surface. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a repeater device having a first coupler to extract downstream channel signals from first guided electromagnetic waves bound to a transmission medium of a guided wave communication system. An amplifier amplifies the downstream channel signals to generate amplified downstream channel signals. A channel selection filter selects one or more of the amplified downstream channel signals to wirelessly transmit to the at least one client device via an antenna. A second coupler guides the amplified downstream channel signals to the transmission medium of the guided wave communication system to propagate as second guided electromagnetic waves. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a transmission device that includes a transmitter that generates a first electromagnetic wave to convey data. A coupler couples the first electromagnetic wave to a single wire transmission medium having an outer surface, to forming a second electromagnetic wave that is guided to propagate along the outer surface of the single wire transmission medium via at least one guided wave mode that includes an asymmetric or non-fundamental mode having a lower cutoff frequency. A carrier frequency of the second electromagnetic wave is selected to be within a limited range of the lower cutoff frequency, so that a majority of the electric field is concentrated within a distance from the outer surface that is less than half the largest cross sectional dimension of the single wire transmission medium, and/or to reduce propagation loss. Other embodiments are disclosed.
Abstract:
A quasi-optical coupling system launches and extracts surface wave communication transmissions from a wire. At millimeter-wave frequencies, where the wavelength is small compared to the macroscopic size of the equipment, the millimeter-wave transmissions can be transported from one place to another and diverted via lenses and reflectors, much like visible light. Transmitters and receivers can be positioned near telephone and power lines and reflectors placed on or near the cables can reflect transmissions onto or off of the cables. The lenses on the transmitters are focused, and the reflectors positioned such that the reflected transmissions are guided waves on the surface of the cables. The reflectors can be polarization sensitive, where one or more of a set of guided wave modes can be reflected off the wire based on the polarization of the guided wave modes and polarization and orientation of the reflector.
Abstract:
Aspects of the subject disclosure may include, for example, a method for receiving a request to steer wireless signals generated by a plurality of dielectric antennas, and adjusting, by the controller, a plurality of adjustable delays coupled to a transceiver to adjust an orientation of wireless signals received or generated by the plurality of dielectric antennas, each of the plurality of dielectric antennas comprising a feed point coupled to a different one of the plurality of adjustable delays, the transceiver facilitating reception or transmission of electromagnetic waves propagating via a different one of the feed points of the plurality of dielectric antennas along corresponding dielectric feedlines without an electrical return path. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a communication device that includes an antenna array integrated with a light assembly having at least one light that illuminates an area about a light pole. The antenna array includes a plurality of dielectric antennas that are configured to transmit outbound wireless signals and receive inbound wireless signals. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a repeater device having a first coupler to extract downstream channel signals from first guided electromagnetic waves bound to a transmission medium of a guided wave communication system. An amplifier amplifies the downstream channel signals to generate amplified downstream channel signals. A channel selection filter selects one or more of the amplified downstream channel signals to wirelessly transmit to the at least one client device via an antenna. A second coupler guides the amplified downstream channel signals to the transmission medium of the guided wave communication system to propagate as second guided electromagnetic waves. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a client node device having a radio configured to wirelessly receive downstream channel signals from a communication network. An access point repeater (APR) launches the downstream channel signals on a guided wave communication system as guided electromagnetic waves that propagate along a transmission medium and to wirelessly transmit the downstream channel signals to at least one client device. Other embodiments are disclosed.