Abstract:
A polymeric stent can be implanted for treatment of the Eustachian tube. The stent can be designed to have length-dependent radial strength to allow it to stay within the Eustachian tube and to allow normal closing and opening of the Eustachian tube. A balloon can be used to implant the stent, and the balloon can be coated with a therapeutic agent. A coated balloon can also be used to transfer therapeutic agents to the sinus cavity during a balloon sinus dilation procedure.
Abstract:
Medical devices and methods for forming an arteriovenous (AV) fistula include a stent having an arterial tubular portion and vein supporting tongue connected by a pre-shaped connector and a venous frustoconical stent having a distal end for maintaining a take-off angle for the venous portion of the AV fistula. Also disclosed is an angled balloon for assisting with the formation of the AV fistula. The medical devices disclosed herein support an AV fistula formation having a desired take off angle of about 30 degrees, or between about 15 and 45 degrees.
Abstract:
A drug delivery balloon is provided, the a balloon having an outer surface, and a tunable coating disposed on at least a length of the balloon surface. The tunable coating includes a first therapeutic agent and a first excipient, wherein the cytostatic therapeutic agent and the at least one excipient have a weight ratio of about 20:1 to about 1:20, and further wherein the coating provides increased efficiency of therapeutic transfer to a body lumen.
Abstract:
Stent scaffolds that include a polymeric structure or structures bonded to the scaffold and extending along their length are disclosed. The polymeric structure extends across some or all of the gaps in struts along the length of the scaffold. Segmented scaffolds are also disclosed that include two or more axial segments arranged end to end not connected by link sruts.
Abstract:
A method of crimping a stent is disclosed. The stent includes a minimum crimped diameter such that in the minimum crimped diameter, a pair of stent rings, between which marker support structures reside, do not make contact with the marker support structures. The crimped profile of the stent of the present invention can be as small as the crimped profile of a same stent but without the maker support structures.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold, after being deployed by the balloon, provides a crush recovery of about 90% after the diameter of the scaffold has been pinched or crushed by 50%. The scaffold has a pattern including an asymmetric closed cell connecting links connecting the closed cells.
Abstract:
A stent made from a material comprising a polymer is disclosed. The stent has a pre-crimp diameter and a wall thickness such that a ratio of the pre-crimp diameter to the wall thickness is between 30 and 60. The stent has a pattern of interconnected elements. The interconnected elements including a plurality of rings connected by links, wherein each ring includes struts and crowns, and the struts are configured to fold at the crowns when the stent is crimped to the balloon.
Abstract:
A scaffold is formed by several segments joined or connected to each other by only at least one coupling. The coupling decouples the segments in the axial direction over a finite distance of axial displacement. The scaffold when implanted in a peripheral vessel reduces loading on rings of a segment due to the decoupling of the segments in the axial direction over the finite distance.
Abstract:
A method of manufacturing a stent is disclosed. The stent includes a minimum crimped diameter such that in the minimum crimped diameter, a pair of stent rings, between which marker support structures reside, do not make contact with the marker support structures. The crimped profile of the stent of the present invention can be as small as the crimped profile of a same stent but without the marker support structures.