Abstract:
An implantable prosthesis can comprise a strut having a lumen, radiopaque particles within the lumen, and a polymer binder. The polymer binder retains the radiopaque particles within the lumen. The strut may have side holes through which a therapeutic agent may pass and through which the radiopaque particles are incapable of passing. The polymer binder may be absent or optional. The radiopaque particles can have sizes that prevent them from escaping out of the lumen through the side holes. The radiopaque particles placed within the lumen can improve visualization of the prosthesis during an implantation procedure.
Abstract:
Disclosed herein are drug delivery medical devices. A polymer coating for a medical device is provided which comprises a minimum amount of a drug bonded to the polymer in the coating.
Abstract:
An apparatus for vascular denervation, comprising a catheter configured for delivery into a vessel of a patient. A balloon is mounted on a distal tip of the catheter, the balloon being configured to be inflatable and further configured so that, upon inflation, the balloon adopts a shape that includes a first edge and a second edge that wind around each other in a double helix, the first edge and the second edge being separated from each other by a first crease and a second crease that also wind around each other in a double helix. A first electrode is attached to the balloon and is located to extend along the first edge.
Abstract:
Disclosed herein are drug delivery medical devices. A polymer coating for a medical device is provided which comprises a minimum amount of a drug bonded to the polymer in the coating.
Abstract:
An implantable prosthesis can comprise a strut having a lumen, and radiopaque particles within the lumen. The radiopaque particles placed within the lumen can improve visualization of the prosthesis during an implantation procedure. The radiopaque particles can be bonded to each other to prevent the radiopaque particles from escaping out of the strut.
Abstract:
A therapeutic agent delivery system formed of a specific type of poly(ester amide) (PEA), a therapeutic agent, and a water miscible solvent is described herein. A method of delivering the therapeutic agent delivery system by delivering the therapeutic agent delivery system formed of a PEA polymer, a therapeutic agent, and a water miscible solvent to a physiological environment and separating the phase of the therapeutic agent delivery system to form a membrane from the polymer to contain the therapeutic agent within the physiological environment is also described. Additionally disclosed is a kit including a syringe and a therapeutic agent delivery system within the syringe.
Abstract:
A scaffold is formed by several segments joined or connected to each other by only at least one coupling. The coupling decouples the segments in the axial direction over a finite distance of axial displacement. The scaffold when implanted in a peripheral vessel reduces loading on rings of a segment due to the decoupling of the segments in the axial direction over the finite distance.
Abstract:
An implantable prosthesis can comprise a strut having a lumen, radiopaque particles within the lumen, and a polymer binder. The polymer binder retains the radiopaque particles within the lumen. The strut may have side holes through which a therapeutic agent may pass and through which the radiopaque particles are incapable of passing. The polymer binder may be absent or optional. The radiopaque particles can have sizes that prevent them from escaping out of the lumen through the side holes. The radiopaque particles placed within the lumen can improve visualization of the prosthesis during an implantation procedure.
Abstract:
Implants for treating insufficient blood flow to a heart muscle with transmyocardial revascularization are disclosed. Methods of treating insufficient blood flow to a heart muscle with the implant are also disclosed. The implant can have a body with an inner lumen that supports a channel in the heart muscle to allow for increased blood flow through the lumen upon implantation. The implant can include active agents to prevent or inhibit thrombotic closure of the channel, to promote vascularization, or both.