摘要:
A processor device is disclosed and includes a memory and a sequencer that is responsive to the memory. The sequencer supports very long instruction word (VLIW) type instructions and at least one VLIW instruction packet uses a number of operands during execution. The processor device further includes a plurality of instruction execution units responsive to the sequencer and a plurality of register files. Each of the plurality of register files includes a plurality of registers and the plurality of register files are coupled to the plurality of instruction execution units. Further, each of the plurality of register files includes a number of data read ports and the number of data read ports of each of the plurality of register files is less than the number of operands used by the at least one VLIW instruction packet.
摘要:
Techniques for the design and use of a digital signal processor, including (but not limited to) for processing transmissions in a communications (e.g., CDMA) system. The method and system improve software instruction debugging operations by capturing real-time information relating to software execution flow and include and instructions and circuitry for operating a core processor process within a core processor. A non-intrusive debugging process operates within a debugging mechanism of a digital signal processor. Non-intrusively monitoring in real time predetermined aspects of software execution occurs with the core processing process and occurs in real-time on the processor. An embedded trace macrocell records selectable aspects of the non-intrusively monitored software execution and generates at least one breakpoint in response to events arising within the selectable aspects of the non-intrusively monitored software execution. The present disclosure controls aspects of the non-intrusive debugging process in response to at least one breakpoint.
摘要:
Techniques for processing transmissions in a communications (e.g., CDMA) system. An aspect of the disclosed subject matter includes a method for processing instructions on a multithreaded processor. The multithreaded processor processes a plurality of threads via a plurality of processor pipelines. The method includes the step determining the operating frequency, F, at which the multithreaded processor operates. Then, the method determines a variable thread switch timeout state for triggering the switching of the processing among the plurality of active threads. The variable thread switch timeout state varies so that each of the plurality of active threads operates at a frequency of an allocated portion of the frequency, F. The allocated portion at which the active threads operate is determined at least in part in order to optimize the operation of the multithreaded processor. The method further switches the processing from a first one of the active threads to a next one of the active threads upon the occurrence of the variable thread switch timeout state.
摘要:
Techniques for the design and use of a digital signal processor, including processing transmissions in a communications (e.g., code division multiple access) system. Power-efficient sign extension for Booth multiplication processes involves applying a sign bit in a Booth multiplication tree. The sign bit allows the Booth multiplication process to perform a sign extension step. This further involves one-extending a predetermined partial product row of the Booth multiplication tree using a sign bit for preserving the correct sign of the predetermined partial product row. The process and system resolve the signal value of the sign bit by generating a sign-extension bit in the Booth multiplication tree. The sign-extension bit is positioned in a carry-out column to extend the product of the Booth multiplication process. Then, the method and system form a final product from the Booth multiplication tree by adding the carry-out value to the sign bit positioned at least a predetermined column of the Booth multiplication tree. The result is to effectively extend the sum component of the final product with the sign and zero-extending the carry component of the final product.
摘要:
An instruction memory unit comprises a first memory structure operable to store program instructions, and a second memory structure operable to store program instructions fetched from the first memory structure, and to issue stored program instructions for execution. The second memory structure is operable to identify a repeated issuance of a forward program redirect construct, and issue a next program instruction already stored in the second memory structure if a resolution of the forward branching instruction is identical to a last resolution of the same. The second memory structure is further operable to issue a backward program redirect construct, determine whether a target instruction is stored in the second memory structure, issue the target instruction if the target instruction is stored in the second memory structure, and fetch the target instruction from the first memory structure if the target instruction is not stored in the second memory structure.
摘要:
Techniques for the design and use of a digital signal processor, including (but not limited to) for processing transmissions in a communications (e.g., CDMA) system. The method and system improve software instruction debugging operations by capturing real-time information relating to software execution flow and include and instructions and circuitry for operating a core processor process within a core processor. A non-intrusive debugging process operates within a debugging mechanism of a digital signal processor. Non-intrusively monitoring in real time predetermined aspects of software execution occurs with the core processing process and occurs in real-time on the processor. An embedded trace macrocell records selectable aspects of the non-intrusively monitored software execution and generates at least one breakpoint in response to events arising within the selectable aspects of the non-intrusively monitored software execution. The present disclosure controls aspects of the non-intrusive debugging process in response to at least one breakpoint.
摘要:
Techniques for the design and use of a digital signal processor, including (but not limited to) for processing transmissions in a communications (e.g., CDMA) system. The disclosed method and system provide for processing instructions in a multi-threaded process including the use of breakpoint instructions for generating debugging event(s). Generating a debugging event occurs in response to the execution of breakpoint instructions and executes debugging instructions in response to the debugging event. The debugging instructions debug processing instructions in the multi-threaded processor by transitioning at least one or more threads into a debugging mode. The disclosure generates a debugging return for reporting the executing debugging instructions in the subset of the threads of the multi-threaded processor.
摘要:
In one embodiment, a digital signal processor includes look ahead logic to decrease the number of bubbles inserted in the processing pipeline. The processor receives data containing instructions in a plurality of buffers and decodes the size of a first instruction. The beginning of a second instruction is determined based on the size of the first instruction. The size of the second instruction is decoded and the processor determines whether loading the second instruction will deplete one of the plurality of buffers.
摘要:
In one embodiment, a digital signal processor includes look ahead logic to decrease the number of bubbles inserted in the processing pipeline. The processor receives data containing instructions in a plurality of buffers and decodes the size of a first instruction. The beginning of a second instruction is determined based on the size of the first instruction. The size of the second instruction is decoded and the processor determines whether loading the second instruction will deplete one of the plurality of buffers.
摘要:
A computation core includes a computation block, an addressing block and an instruction sequencer, which are coupled to a memory through a memory interface. The computation block includes a register file and dual execution units. The execution units include features for enhanced performance in executing digital signal computations. The computation core is configured for executing digital signal processor instructions and microcontroller instructions, while achieving efficient digital signal processor computation and high code density. A finite impulse response filter algorithm achieves high performance on the dual execution units.