Abstract:
An integrated circuit (“IC”) includes circuitry for use in testing a serial data signal. One such IC includes circuitry for transmitting the serial data signal with optional jitter, optional noise, and/or controllably variable drive strength. One such IC also includes circuitry for receiving the serial data signal and performing a bit error rate (“BER”) analysis in such a signal. Such an IC provides output signals indicative of results of its operations. One such IC operates in various modes to perform or at least emulate functions of an oscilloscope, a bit error rate tester, etc., for testing signals and circuitry with respect to jitter-tolerance, noise-tolerance, etc.
Abstract:
A transmitter circuit is operable to provide an output signal in response to a first periodic signal. A multiplexer circuit is operable to provide a second periodic signal as a selected signal during a first phase of operation. The multiplexer circuit is operable to provide the output signal of the transmitter circuit as the selected signal during a second phase of operation. A sampler circuit is operable to generate first samples of the selected signal during the first phase of operation. The sampler circuit is operable to generate second samples of the selected signal during the second phase of operation. A duty cycle control circuit is operable to adjust a duty cycle of the first periodic signal based on the first and the second samples.
Abstract:
Signal detection circuitry for a serial interface oversamples the input—i.e., samples the input multiple times per clock cycle—so that the likelihood of missing a signal is reduced. Sampling may be done with a regenerative latch which has a large bandwidth and can latch a signal at high speed. The amplitude threshold for detection may be programmable, particularly in a programmable device. Thus, between the use of a regenerative latch which is likely to catch any signal that might be present, and the use of oversampling to avoid the problem of sampling at the wrong time, the likelihood of failing to detect a signal is greatly diminished. Logic, such as a state machine, may be used to determine whether the samples captured s do or do not represent a signal. That logic may be programmable, allowing a user to set various parameters for signal detection.
Abstract:
An IC that includes an eye viewer and a BER checker coupled to the eye viewer, where the BER checker receives a serial data signal from the eye viewer, is provided. In one implementation, the BER checker receives the serial data signal from the eye viewer without the serial data signal passing through a deserializer. In one implementation, the BER checker compares the serial data signal against a reference data signal to determine the BER for the serial data signal. In one implementation, the IC includes an IC core coupled to the eye viewer and the BER checker, where the BER checker is outside the IC core. In one implementation, the BER checker is a dedicated BER checker. In one implementation, the BER checker includes an exclusive OR gate, a programmable delay circuit coupled to the exclusive OR gate, and an error counter coupled to the exclusive OR gate.
Abstract:
An integrated circuit (“IC”) may include circuitry for use in testing a serial data signal. The IC may include circuitry for transmitting the serial data signal with optional jitter, optional noise, and/or controllably variable drive strength. The IC may also include circuitry for receiving the serial data signal and performing a bit error rate (“BER”) analysis in such a signal. The IC may provide output signals indicative of results of its operations. The IC can operate in various modes to perform or at least emulate functions of an oscilloscope, a bit error rate tester, etc., for testing signals and circuitry with respect to jitter-tolerance, noise-tolerance, etc.
Abstract:
A voltage-controlled oscillator operates at high frequency without high gain by dividing the frequency range into a plurality of subranges, which preferably are substantially equal in size. Within any subrange, the full extent of variation in the control signal changes the frequency only by the extent of the subrange. The gain is thus substantially equal to the gain one would expect for the full frequency range, divided by the number of subranges. The subrange may be selected manually, or by an initial calibration process. In one embodiment, the oscillator includes a voltage-to-current converter and a current-controlled oscillator, with a current mirror arrangement. In that embodiment, selection of the subrange may be controlled by turning on the correct number of current legs.
Abstract:
Pre-emphasis may be able to operate in either of two modes. In a first mode, when one bit has a same value as the bit that immediately preceded it, an output signal for said one bit is based on a first electrical current reduced by a second electrical current. Otherwise the output signal for said one bit is based on the first current without regard for the second current. The second mode may be similar to the first mode when said one bit has the same value as the immediately preceding bit; but otherwise the output signal for said one bit is based on the first current increased by the second current. As an alternative to using the immediately preceding bit (as in the above “post-tap” operation), the immediately succeeding (following) bit may be used in generally the same way (in so-called “pre-tap” operation).
Abstract:
A phase interpolator circuit includes first and second low pass filter circuits and a multiplier circuit. The first low pass filter circuit increases a common mode voltage of a clock signal to generate a first varying signal. The second low pass filter circuit increases a common mode voltage of a clock signal to generate a second varying signal. The first low pass filter circuit can include a first variable capacitance, and the second low pass filter circuit can include a second variable capacitance. The multiplier circuit has a first input coupled to the first low pass filter circuit and a second input coupled to the second low pass filter circuit. The multiplier circuit generates a third varying signal in response to the first and the second varying signals. The phase interpolator circuit generates a phase shift in the third varying signal.
Abstract:
Transmitter driver circuitry for outputting a high-speed serial data signal (e.g., in the range of about 10 gigabits per second or higher) includes H-tree driver circuitry having only a main driver stage and a post-tap driver stage. At least one transistor in the H-tree driver circuitry is constructed and connected to provide electrostatic discharge protection. PMOS and NMOS current sources are used for the H-tree driver circuitry to enhance power supply noise rejection.
Abstract:
Circuitry for receiving a high-speed serial data signal (e.g., having a bit rate in the range of about 10 Gpbs and higher) includes a two-stage, continuous-time, linear equalizer having only two serially connected stages. Phase detector circuitry may be provided for receiving the serial output of the equalizer and for converting successive pairs of bits in that output to successive parallel-form bit pairs. Further demultiplexing circuitry may be provided to demultiplex successive groups of the parallel-form bit pairs to final groups of parallel bits, which can be quite large in terms of number of bits (e.g., 64 parallel bits). Another aspect of the invention relates to multiplexer circuitry for efficiently going in the opposite direction from such relatively large groups of parallel data bits to a high-speed serial data output signal.