摘要:
A method, test circuit and test system provide measurements to accurately characterize threshold voltage changes due to negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI). Both the bias temperature instability recovery profile and/or the bias temperature shifts due to rapid repetitions of stress application can be studied. In order to provide accurate measurements when stresses are applied at intervals on the order of tens of nanoseconds while avoiding unwanted recovery, and/or to achieve recovery profile sampling resolutions in the nanosecond range, multiple delay or ring oscillator frequency measurements are made using a delay line that is formed from delay elements that have delay variation substantially caused only by NBTI or PBTI effects. Devices in the delay elements are stressed, and then the delay line/ring oscillator is operated to measure a threshold voltage change for one or more measurement periods on the order of nanoseconds.
摘要:
Mechanisms are provided for characterizing long range variability in integrated circuit manufacturing. A model derivation component tests one or more density pattern samples, which are a fabricated integrated circuits having predetermined pattern densities and careful placement of current-voltage (I-V) sensors. The model derivation component generates one or more empirical models to establish range of influence of long range variability effects in the density pattern sample. A variability analysis component receives an integrated circuit design and, using the one or more empirical models, analyzes the integrated circuit design to isolate possible long range variability effects in the integrated circuit design.
摘要:
A method, system and program product are disclosed for improving an IC design that prioritize failure coefficients of slacks that lead to correction according to their probability of failure. With an identified set of independent parameters, a sensitivity analysis is performed on each parameter by noting the difference in timing, typically on endpoint slacks, when the parameter is varied. This step is repeated for every independent parameter. A failure coefficient is then calculated from the reference slack and the sensitivity of slack for each of the timing endpoints and a determination is made as to whether at least one timing endpoint fails a threshold test. Failing timing endpoints are then prioritized for modification according to their failure coefficients. The total number of runs required is one run that is used as a reference run, plus one additional run for each parameter.
摘要:
A parallel array architecture for constant current electro-migration stress testing is provided. The parallel array architecture comprises a device under test (DUT) array having a plurality of DUTs coupled in parallel and a plurality of localized heating elements associated with respective ones of the DUTs in the DUT array. The architecture further comprises DUT selection logic that isolates individual DUTs within the array. Moreover, the architecture comprises current source logic that provides a reference current and controls the current through the DUTs in the DUT array such that each DUT in the DUT array has substantially a same current density, and current source enable logic for selectively enabling portions for the current source logic. Electro-migration stress testing is performed on the DUTs of the DUT array using the heating elements, the DUT selection logic, current source logic, and current source enable logic.
摘要:
A unified test structure having a large number of electronic devices under test is used to characterize both capacitance-voltage parameters (C-V) and current-voltage parameters (I-V) of the devices. The devices are arranged in an array of columns and rows, and selected by control logic which gates input/output pins that act variously as current sources, sinks, clamps, measurement ports and sense lines. The capacitance-voltage parameter is measured by taking baseline and excited current measurements for different excitation voltage frequencies, calculating current differences between the baseline and excited current measurements, and generating a linear relationship between the current differences and the different frequencies. The capacitance is then derived by dividing a slope of a line representing the linear relationship by the excitation voltage. Different electronic devices may be so tested, including transistors and interconnect structures.
摘要:
A test circuit for fast determination of device capacitance variation statistics provides a mechanism for determining process variation and parameter statistics using low computing power and readily available test equipment. A test array having individually selectable devices is stimulated under computer control to select each of the devices sequentially. A test output from the array provides a current or voltage that dependent on a particular device parameter. The sequential selection of the devices produces a voltage or current waveform, characteristics of which are measured using a digital multi-meter that is interfaced to the computer. The rms value of the current or voltage at the test output is an indication of the standard deviation of the parameter variation and the DC value of the current or voltage is an indication of the mean value of the parameter.
摘要:
A unified test structure having a large number of electronic devices under test is used to characterize both capacitance-voltage parameters (C-V) and current-voltage parameters (I-V) of the devices. The devices are arranged in an array of columns and rows, and selected by control logic which gates input/output pins that act variously as current sources, sinks, clamps, measurement ports and sense lines. The capacitance-voltage parameter is measured by taking baseline and excited current measurements for different excitation voltage frequencies, calculating current differences between the baseline and excited current measurements, and generating a linear relationship between the current differences and the different frequencies. The capacitance is then derived by dividing a slope of a line representing the linear relationship by the excitation voltage. Different electronic devices may be so tested, including transistors and interconnect structures.
摘要:
A unified test structure having a large number of electronic devices under test is used to characterize both capacitance-voltage parameters (C-V) and current-voltage parameters (I-V) of the devices. The devices are arranged in an array of columns and rows, and selected by control logic which gates input/output pins that act variously as current sources, sinks, clamps, measurement ports and sense lines. The capacitance-voltage parameter is measured by taking baseline and excited current measurements for different excitation voltage frequencies, calculating current differences between the baseline and excited current measurements, and generating a linear relationship between the current differences and the different frequencies. The capacitance is then derived by dividing a slope of a line representing the linear relationship by the excitation voltage. Different electronic devices may be so tested, including transistors and interconnect structures.
摘要:
The present invention provides a method for measuring statistics of dynamic random access memory (DRAM) process parameters for improving yield and performance of a DRAM. The basic principles for measuring capacitance are similar to charge based capacitance (CBCM), however the present invention differs in several fundamental aspects. In one embodiment, the method includes receiving a selection of a storage cell of the DRAM; measuring a storage cell capacitance (Ccell) of the storage cell; measuring a local bitline capacitance (Cbl) of the storage cell; measuring a transfer device voltage (VT) of the storage cell; computing a transfer ratio (TR) for the storage cell; and measuring a data retention time for the storage cell.
摘要:
A method, system and program product are disclosed for improving an IC design that prioritize failure coefficients of slacks that lead to correction according to their probability of failure. With an identified set of independent parameters, a sensitivity analysis is performed on each parameter by noting the difference in timing, typically on endpoint slacks, when the parameter is varied. This step is repeated for every independent parameter. A failure coefficient is then calculated from the reference slack and the sensitivity of slack for each of the timing endpoints and a determination is made as to whether at least one timing endpoint fails a threshold test. Failing timing endpoints are then prioritized for modification according to their failure coefficients. The total number of runs required is one run that is used as a reference run, plus one additional run for each parameter.