Abstract:
An electronic device may have a housing in which a display is mounted. The display may have an active area in which images are displayed by an array of pixels and an inactive area that is free of pixels. A color ambient light sensor may make color and luminance measurements on ambient light received through an ambient light sensor window in the inactive area of the display or elsewhere in the electronic device. The color ambient light sensor may have color ambient light sensor elements of different colors. The ambient light sensor elements may extend in a row along an edge of the display or may have other configurations. Analog-to-digital converter circuitry and switching circuitry may gather color ambient light sensor measurements and measurements indicative of whether or not the color ambient light sensor has been obscured by an external object from the light sensor elements.
Abstract:
An electronic device may be provided with a display mounted in a housing. The display may have an array of pixels that form an active area and may have an inactive area that runs along an edge of the active area. A color ambient light sensor may gather ambient light measurements through a window in an opaque masking layer in the inactive area. The color ambient light sensor may have photodiodes with different spectral sensitivities and may have a dark current photodiode that is insensitive to light. A set of analog-to-digital converters may be used to digitize photodiode signals from the photodiodes. A switch array may be used to distribute signals from the photodiodes to each of the analog-to-digital converters. This allows the output of each photodiode to be averaged over multiple analog-to-digital converters to remove any impact of variations in performance between converters.
Abstract:
An electronic device may have a display with a brightness that is adjusted based on data gathered from one or more ambient light sensors (ALSs). In one suitable arrangement, an ALS may include a photodiode, a temperature sensor, a scaler, an analog-to-digital converter (ADC), and a subtractor. The subtractor may have a first input coupled to the photodiode via the ADC, a second input coupled to the temperature sensor via the scaler, and an output on which a leakage-compensated sensor output is provided. In another suitable arrangement, the ALS may include first and second photodiodes, a light blocking layer formed over the second photodiode, a scaler, and a subtractor. The subtractor may have a first input coupled to the first photodiode, a second input coupled to the second photodiode via the scaler, and an output on which a leakage-compensated sensor output is provided.
Abstract:
An electronic device may be attached to an external item. The electronic device may include an optical identification sensor configured to sense a color-encoded tag in the external item when the item is attached to the device. The optical identification sensor may include a board layer, a protective filter layer, wall structures for supporting the protective filter layer on the board layer, a linear array of photodetectors disposed between the board layer and the protective filter layer, a field-of-view restriction filter interposed between the photodetectors and the protective filter layer, and a light source having multiple emitters for illuminating the color-encoded tag. The emitters may be activated sequentially to produce multiple images that are combined to reconstruct an accurate reading of the color-encoded tag, which can then be used to identify the type of external item currently attached to the electronic device.
Abstract:
An electronic device may be provided with a display. An opaque layer may be formed on an inner surface of a display cover layer in an inactive area of the display. An optical component window may be formed from the opening and may be aligned with an ambient light sensor such as a color ambient light sensor. The color ambient light sensor may have photodetectors on a light detector integrated circuit. Electrostatic shielding may be incorporated into the color ambient light sensor to prevent perturbations in the output of the color ambient light sensor due to the presence of electrostatic charge in the vicinity of the optical component window. The shielding may include a grounded shield layer on a surface of an ambient light sensor support structure that faces the display cover layer and may include a transparent shield layer overlapping the photodetectors.
Abstract:
An electronic device may be provided with a color ambient light sensor. The color ambient light sensor may be used to measure an ambient light spectrum over a wavelength range of interest. Control circuitry in the electronic device can take actions based on the measured ambient light spectrum such as adjusting the brightness and color cast of content on a display. A display may have a display cover layer. The color ambient light sensor can be mounted under the display cover layer and may receive ambient light through the display cover layer. The color ambient light sensor may have a tunable wavelength filter such as an electrically adjustable Fabry-Perot resonator. A light collimator may be interposed between the display cover layer and the Fabry-Perot resonator to collimate ambient light that is passed to the Fabry-Perot resonator. A light detector measures the light passing through the Fabry-Perot resonator.
Abstract:
An electronic device may be provided with an ambient light sensor. An analog-to-digital converter may be used to digitize ambient light measurements made with the ambient light sensor. Control circuitry in the electronic device may be used to adjust the brightness of a display and take other actions in the electronic device based on the digitized ambient light measurements. The analog-to-digital converter may be a hybrid analog-to-digital converter having a most-significant-bit analog-to-digital converter circuit branch based on an integrating analog-to-digital converter and a least-significant-bit analog-to-digital converter circuit branch based on a successive-approximation-register analog-to-digital converter. The most-significant-bit branch may produce an output based a reset count for an integrator that is reset a number of times during a measurement period. The least-significant-bit branch may produce an output by digitizing an output from the integrator upon termination of the measurement period.
Abstract:
An electronic device may be provided that has a display. The display may produce stray light when producing images for a user. The electronic device may have an ambient light sensor for measuring ambient light levels. Ambient light data may be used in adjusting display brightness. The display may be periodically disabled to prevent the stray light from interfering with the ambient light sensor. An integrating analog-to-digital converter may be used in gathering sensor data from the ambient light sensor. Control circuitry may be configured to remove background signals from ambient light sensor data. The background signals may be associated with leakage current that arises due to offset voltages in an operational amplifier in the integrating analog-to-digital converter. The operational amplifier may have an analog autozeroing capability or control circuitry may be used to subtract background data from ambient light sensor data.