Abstract:
A shatter proof enclosure and mount for a motion capture element that couples to equipment, where the enclosure and optionally the mount is shatter proof or shatter resistant. Exposed areas of the enclosure or mount or both that are subject to impact may be covered with a protective layer that prevents fragments of the enclosure or internal components from exiting the layer, even in the event of an impact. For example, the protective layer may incorporate flexible materials such as silicone rubber. Alternatively, the protective layer may be rigid but effectively unbreakable, using materials such as polycarbonate. The protective layer may also include a mesh that prevents internal components from existing the enclosure.
Abstract:
Enables intelligent synchronization and transfer of generally concise event videos synchronized with motion data from motion capture sensor(s) coupled with a user or piece of equipment. Greatly saves storage and increases upload speed by uploading event videos and avoiding upload of non-pertinent portions of large videos. Provides intelligent selection of multiple videos from multiple cameras covering an event at a given time, for example selecting one with least shake. Enables near real-time alteration of camera parameters during an event determined by the motion capture sensor, and alteration of playback parameters and special effects for synchronized event videos. Creates highlight reels filtered by metrics and can sort by metric. Integrates with multiple sensors to save event data even if other sensors do not detect the event. Also enables analysis or comparison of movement associated with the same user, other user, historical user or group of users.
Abstract:
Enables recognition of events within motion data obtained from portable wireless motion capture elements and video synchronization of the events with video as the events occur or at a later time, based on location and/or time of the event or both. May use integrated camera or external cameras with respect to mobile device to automatically generate generally smaller event videos of the event on the mobile device or server. Also enables analysis or comparison of movement associated with the same user, other user, historical user or group of users. Provides low memory and power utilization and greatly reduces storage for video data that corresponds to events such as a shot, move or swing of a player, a concussion of a player, or other medical related events or events, such as the first steps of a child, or falling events.
Abstract:
A system that measures a swing of a bat with one or more sensors and analyzes sensor data to create swing quality metrics. Metrics may include for example rotational acceleration, on-plane efficiency, and body-bat connection. Rotational acceleration measures the centripetal acceleration of the bat along the bat's longitudinal axis at a point early in the rotational part of the swing; it is an indicator of the swing's power. On-plane efficiency measures how much of the bat's angular velocity occurs around the swing plane, the plane spanned by the bat and the bat's sweet spot velocity at impact. Body-bat connection measures the angle between the bat and the body tilt axis, which is estimated from the trajectory of the hand position on the bat through the swing; an ideal bat-body connection is near 90 degrees. These three swing quality metrics provide a simple and useful characterization of the swing mechanics.
Abstract:
A method for analyzing sensor data from baseball swings (or swings in similar sports) that transforms data into a reference frame defined by the bat orientation and velocity at impact. The trajectory of the sweet spot of the bat is tracked through the swing, and is analyzed to generate metrics describing the swing. A two-lever model of the swing may be used to model the effects of body rotation and wrist rotation. Data may be analyzed to identify relevant events during the swing such as start of downswing, commit (wrist release), on-plane, peak bat speed, and impact. Illustrative swing metrics derived from the sweet spot trajectory, the swing plane reference frame, and the two-lever model include: forward bat speed, on-plane rotation, hinge angle at commit, hinge angle at impact, body rotation ratio, body tilt angle, and swing plane tilt angle.
Abstract:
Intelligent motion capture element that includes sensor personalities that optimize the sensor for specific movements and/or pieces of equipment and/or clothing and may be retrofitted onto existing equipment or interchanged therebetween and automatically detected for example to switch personalities. May be used for low power applications and accurate data capture for use in healthcare compliance, sporting, gaming, military, virtual reality, industrial, retail loss tracking, security, baby and elderly monitoring and other applications for example obtained from a motion capture element and relayed to a database via a mobile phone. System obtains data from motion capture elements, analyzes data and stores data in database for use in these applications and/or data mining. Enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data. Enables performance related equipment fitting and purchase. Includes active and passive identifier capabilities.
Abstract:
Portable wireless mobile device motion capture data mining system and method configured to display motion capture/analysis data on a mobile device. System obtains data from motion capture elements, analyzes data and store data in database for data mining, which may be charged for. Enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data including ratings. Predicted ball flight path data can be calculated and shown on a time line showing relative peaks of velocity for the user's body parts. User can determine equipment that fits best and immediately purchase the equipment, via the mobile device. Custom equipment may be ordered on the mobile device from a vendor that can assemble-to-order customer built equipment and ship the equipment. Includes active and passive golf shot count capabilities.
Abstract:
An aiming system that provides feedback on how closely the aim of an object is aligned with a direction to a target. An inertial sensor on the object provides data on the object's position and orientation; this data is combined with target direction information to determine how to correct the aim. An illustrative application is a golf club aiming system that measures whether the clubface normal is aligned horizontally with the direction to the hole. The system sends feedback signals to the user to help the user adjust the aim. These signals may include for example audible tones or haptic vibrations that vary in frequency and amplitude to instruct the user to adjust the aim. For example, haptic signals may be sent to a smart watch worn by the user; the user may therefore obtain aiming feedback without having to look at a screen.
Abstract:
Intelligent motion capture element that includes sensor personalities that optimize the sensor for specific movements and/or pieces of equipment and/or clothing and may be retrofitted onto existing equipment or interchanged therebetween and automatically detected for example to switch personalities. May be used for low power applications and accurate data capture for use in healthcare compliance, sporting, gaming, military, virtual reality, industrial, retail loss tracking, security, baby and elderly monitoring and other applications for example obtained from a motion capture element and relayed to a database via a mobile phone. System obtains data from motion capture elements, analyzes data and stores data in database for use in these applications and/or data mining. Enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data. Enables performance related equipment fitting and purchase. Includes active and passive identifier capabilities.