摘要:
A method for analyzing sensor data from baseball swings (or swings in similar sports) that transforms data into a reference frame defined by the bat orientation and velocity at impact. The trajectory of the sweet spot of the bat is tracked through the swing, and is analyzed to generate metrics describing the swing. A two-lever model of the swing may be used to model the effects of body rotation and wrist rotation. Data may be analyzed to identify relevant events during the swing such as start of downswing, commit (wrist release), on-plane, peak bat speed, and impact. Illustrative swing metrics derived from the sweet spot trajectory, the swing plane reference frame, and the two-lever model include: forward bat speed, on-plane rotation, hinge angle at commit, hinge angle at impact, body rotation ratio, body tilt angle, and swing plane tilt angle.
摘要:
Enables event analysis from sensors including environmental, physiological and motion capture sensors. Also enables displaying information based on events recognized using sensor data associated with a user, piece of equipment or based on previous motion analysis data from the user or other user(s) or other sensors. Enables intelligent analysis, synchronization, and transfer of generally concise event videos synchronized with motion data from motion capture sensor(s) coupled with a user or piece of equipment. Enables creating, transferring, obtaining, and storing concise event videos generally without non-event video. Events stored in the database identifies trends, correlations, models, and patterns in event data. Greatly saves storage and increases upload speed by uploading event videos and avoiding upload of non-pertinent portions of large videos. Creates highlight and fail reels filtered by metrics and can sort by metric. Compares motion trajectories of users and objects to optimally efficient trajectories, and to desired trajectories.
摘要:
Enables detection of events using motion capture sensors and potentially other sensors electromagnetic field, temperature, humidity, wind, pressure, elevation, light, sound, or heart rate sensors to confirm and post events, differentiate similar types of motion events to determine the type of equipment or activity or quality of the event, such proficiency. Enables motion capture data and other sensor data to be utilized to curate text, images, video, sound and post the results to social networks, for example in a dedicated feed. Embodiments of the system also may post or filter to social media sites using any other filter besides location and time and the text in the social media posts for example. May use motion or other sensor data to define and event, eliminate false positive events, post true events, and/or correlate the events with social media to confirm the events, or post the events in a particular channel.
摘要:
Enables recognition of events within motion data obtained from portable wireless motion capture elements and video synchronization of the events with video as the events occur or at a later time, based on location and/or time of the event or both. May use integrated camera or external cameras with respect to mobile device to automatically generate generally smaller event videos of the event on the mobile device or server. Also enables analysis or comparison of movement associated with the same user, other user, historical user or group of users. Provides low memory and power utilization and greatly reduces storage for video data that corresponds to events such as a shot, move or swing of a player, a concussion of a player, or other medical related events or events, such as the first steps of a child, or falling events.
摘要:
Virtual reality system for viewing current and previously stored or calculated motion data. System obtains data from motion capture elements, analyzes data and stores data in database for use in virtual reality applications and/or data mining, which may be charged for. Enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data. Ratings, compliance, ball flight path data can be calculated and displayed, for example on a map or timeline or both. Enables performance related equipment fitting and purchase. Includes active and passive identifier capabilities.
摘要:
A system that measures a swing of a bat with one or more sensors and analyzes sensor data to create swing quality metrics. Metrics may include for example rotational acceleration, on-plane efficiency, and body-bat connection. Rotational acceleration measures the centripetal acceleration of the bat along the bat's longitudinal axis at a point early in the rotational part of the swing; it is an indicator of the swing's power. On-plane efficiency measures how much of the bat's angular velocity occurs around the swing plane, the plane spanned by the bat and the bat's sweet spot velocity at impact. Body-bat connection measures the angle between the bat and the body tilt axis, which is estimated from the trajectory of the hand position on the bat through the swing; an ideal bat-body connection is near 90 degrees. These three swing quality metrics provide a simple and useful characterization of the swing mechanics.
摘要:
Enables a fitting system for sporting equipment using an application that executes on a mobile phone for example to prompt and accept motion inputs from a given motion capture sensor to measure a user's size, range of motion, speed and then utilizes that same sensor to capture motion data from a piece of equipment, for example to further optimize the fit of, or suggest purchase of a particular piece of sporting equipment. Utilizes correlation or other data mining of motion data for size, range of motion, speed of other users to maximize the fit of a piece of equipment for the user based on other user's performance with particular equipment. For example, this enables a user of a similar size, range of motion and speed to data mine for the best performance equipment, e.g., longest drive, lowest putt scores, highest winning percentage, etc., associated with other users having similar characteristics.
摘要:
A system that analyzes data from multiple sensors, potentially of different types, that track motions of players, equipment, and projectiles such as balls. Data from different sensors is combined to generate integrated metrics for events and activities. Illustrative sensors may include inertial sensors, cameras, radars, and light gates. As an illustrative example, a video camera may track motion of a pitched baseball, and an inertial sensor may track motion of a bat; the system may use the combined data to analyze the effectiveness of the swing in hitting the pitch. The system may also use sensor data to automatically select or generate tags for an event; tags may represent for example activity types, players, performance levels, or scoring results. The system may analyze social media postings to confirm or augment event tags. Users may filter and analyze saved events based on the assigned tags.
摘要:
Enables integration of sensor data with other information on servers such as social media sites to detect, confirm and/or publish events. Sensors may measure values such as motion, temperature, humidity, wind, pressure, elevation, light, sound, or heart rate, etc. Sensor data and event tags may be utilized to curate text, images, video, sound and post the results to social networks, for example in a dedicated feed. Event tags generated by the system may represent for example activity types, players, performance levels, or scoring results. The system may analyze social media postings to confirm or augment event tags. Users may filter and analyze saved events based on the assigned tags. The system may create highlight and fail reels filtered by metrics and by tags. Recommendations may be provided to a user based on analysis of sensor data and other information; recommendations may include for example recommended friends, purchases, or activities.
摘要:
Enables integration of sensor data with other information on servers such as social media sites to detect, confirm and/or publish events. Sensors may measure values such as motion, temperature, humidity, wind, pressure, elevation, light, sound, or heart rate, etc. Sensor data and event tags may be utilized to curate text, images, video, sound and post the results to social networks, for example in a dedicated feed. Event tags generated by the system may represent for example activity types, players, performance levels, or scoring results. The system may analyze social media postings to confirm or augment event tags. Users may filter and analyze saved events based on the assigned tags. The system may create highlight and fail reels filtered by metrics and by tags. Recommendations may be provided to a user based on analysis of sensor data and other information; recommendations may include for example recommended friends, purchases, or activities.