Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example method may include a method of identifying an activation time in a cardiac electrical signal. The method may include sensing a cardiac electrical signal, generating an approximation signal based at least in part on one or more parameters of the cardiac electrical signal, identifying a fiducial point on the approximation signal and determining, based at least in part on a timing of the fiducial point in the approximation signal, an activation time in the cardiac electrical signal.
Abstract:
A catheter system includes a catheter comprising a tip assembly, the tip assembly having a plurality of electrodes and the plurality of electrodes are configured to measure electrical signals. The system also includes a processing unit configured to: receive a first electrical signal sensed by a first electrode of the plurality of electrodes and a second electrical signal sensed by a second electrode of the plurality of electrodes. A first vector is determined based on the first electrical signal that corresponds to the first electrode. A second vector is determined based on the second electrical signal that corresponds to the second electrode. A resultant vector is determined by summing at least the first vector and the second vector, wherein the resultant vector is indicative of the orientation of the tip assembly.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example system for mapping the electrical activity of the heart includes a catheter shaft. The catheter shaft includes a plurality of electrodes including a first electrode and a second electrode. The system also includes a processor. The processor is capable of collecting a first signal corresponding to the first electrode and a second signal corresponding to the second electrode. Collecting the first and second signals occurs over a time period. The processor is also capable of generating a first time-frequency distribution corresponding to the first signal, identifying a first dominant frequency value occurring at a first dominant frequency and a first time point, generating a second time-frequency distribution corresponding to the second signal, identifying a second dominant frequency value occurring at a second dominant frequency and a second time point and determining an attraction point.
Abstract:
An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
Abstract:
An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
Abstract:
An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
Abstract:
A method for mapping an anatomical structure includes sensing activation signals of physiological activity with a plurality of electrodes disposed in or near the anatomical structure, each activation signal having an associated cycle length, estimating an action potential duration and diastolic interval for each cycle length, generating a restitution curve based on the estimated action potential duration and diastolic interval from a preceding cycle length, iteratively optimizing each estimated action potential duration and corresponding diastolic interval to maximize a functional relationship between the estimated action potential duration and estimated diastolic interval from preceding cycle length, and generating an action potential duration restitution curve based on the optimized action potential durations and diastolic intervals.
Abstract:
A method for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the anatomical structure, identifying at least one of the electrodes not in direct contact with the anatomical structure, and adjusting the activation signals sensed by each of the plurality of electrodes based on the activation signals sensed by the identified at least one of the electrodes not in direct contact with the anatomical structure.
Abstract:
A catheter system includes a plurality of mapping electrodes, an electrode movable relative to the plurality of mapping electrodes, and a guidance system coupled to the plurality of mapping electrodes and the ablation electrode. The guidance system is configured to receive signals associated with intrinsic cardiac activity sensed by the plurality of mapping electrodes and the movable electrode, and to correlate in real-time the intrinsic cardiac activity sensed by the movable electrode with the intrinsic cardiac activity sensed by the plurality of mapping electrodes based on the signals received by the plurality of mapping electrodes and movable electrode to determine a location of the movable electrode with respect to the plurality of mapping electrodes.