Abstract:
A method for registration of virtual endoscopy images in first and second patient positions comprises performing colon segmentation and feature extraction, including centerline and colon surface data for each of the images; resampling the centerline and colon surface data; computing respective local descriptors; pairing point correspondences on the centerlines between the first and second images by minimal cost matching; extrapolating the centerline point correspondences to a 3-dimensional/3-dimensional (3D/3D) transformation between the first and second images. The method also includes selecting a position for a virtual endoscope in one of the images; associating an orthogonal reference frame with the virtual endoscope; and applying the 3D/3D transformation to the orthogonal reference frame so as to derive a corresponding transformed reference frame for the virtual endoscope in the other of the images.
Abstract:
Apparatus for determining a proper insertion depth of a biopsy needle so that a sampling end of the needle just reaches to a designated target area within the body comprises at least one straight calibrated pointing device aligned to point through the selected point in a straight line passing through the designated target region. The pointing device exhibits first and second markers along its length such that respective images are formed on a first image plane by utilizing radiation from a radiation source, along with images corresponding to the selected point and the target area. The images are formed along a straight line in this order: (A) the first marker, (B) the second marker, (C) the selected point, and (D) the target region. The apparatus includes an arrangement for measuring distances on the image plane between images (A), (B), (C), and (D) and a calculator for calculating the cross ratio of the distances, whereby the proper insertion depth of the biopsy needle is determined.
Abstract:
A method for visualizing brain connectivity includes receiving image data including molecular diffusion of brain tissue, constructing a tree data structure from the image data, wherein the tree data structure comprises a plurality of network nodes, wherein each network node is connected to a root of the tree data structure, rendering a ring of a radial layout depicting the tree data structure, wherein a plurality of vertices may be traversed from the top to the bottom, duplicating at least one control point for spline edges sharing a common ancestor, and bundling spline edges by applying a global strength parameter β.
Abstract:
In order to optimize the recording time, provision is made of a method for recording an X-ray image using an X-ray system with an X-ray detector, an X-ray source, a system control, and a computational unit, wherein information relating to the relative direct radiation component in a reference X-ray image and information relating to the utilized recording geometry and/or the utilized primary X-ray dose and/or the utilized filtering is used to determine a relaxation time, during which a ghosting effect of the X-ray detector resulting from a preceding X-ray image decays at least in part, which relaxation time is adapted to the X-ray image to be recorded, and the determined relaxation time is utilized to actuate the recording of the X-ray image.
Abstract:
A method for extracting a colonic centerline includes segmenting a colon from a digital image of a patient's abdomen, selecting one extreme point of the colon as a source point, calculating a first distance transform of every point in the colon that is a distance of a point to the source point, and calculating a second distance transform of every point in the colon, that is a shortest distance of a point to a wall point of the colon. A centerline path is generated through the colon using the first and second distance transforms, starting from a point with a greatest distance to the source point as determined by the first distance transform, and adding points to the centerline path by selecting points with a greatest distance to the source point that are farthest from the wall of the colon using the second distance transform.
Abstract:
A method for generating a positron emission tomography (PET) attenuation correction map from magnetic resonance (MR) images includes segmenting a 3-dimensional (3D) magnetic resonance (MR) whole-body image of a patient into low-signal regions, fat regions, and soft tissue regions; classifying the low-signal regions as either lungs, bones, or air by identifying lungs, identifying an abdominal station, and identifying a lower body station; and generating an attenuation map from the segmentation result by replacing the segmentation labels with corresponding representative attenuation coefficients.
Abstract:
In order to optimize the recording time, provision is made of a method for recording an X-ray image using an X-ray system with an X-ray detector, an X-ray source, a system control, and a computational unit, wherein information relating to the relative direct radiation component in a reference X-ray image and information relating to the utilized recording geometry and/or the utilized primary X-ray dose and/or the utilized filtering is used to determine a relaxation time, during which a ghosting effect of the X-ray detector resulting from a preceding X-ray image decays at least in part, which relaxation time is adapted to the X-ray image to be recorded, and the determined relaxation time is utilized to actuate the recording of the X-ray image.
Abstract:
A method and apparatus for guiding image reading for colon screening, includes calculating a centerline for a colon; scrolling through a succession of two dimensional (2D) cross-sectional images of a colon in respective image planes, such that a current image plane includes a respective current focus point formed by an intersection of the centerline with the current image plane. The method further includes performing a three-dimensional (3D) region growing process for growing a region of a suitable given thickness around a current seed point in a current image plane, the current seed point being at the respective current focus point in the current image plane, such that the region growing “floods” folds within a prescribed distance from the current seed point such that part of the region intersects the current image plane. Portions of the region intersecting the current image plane that meets at least one of conditions (A) and (B) are removed from consideration where: condition (A) includes the region intersecting the given current image plane containing a further connected component not containing the current seed point, and containing a further intersection of the image plane with the centerline other than the current seed point, and condition (B) includes the further connected component exhibiting a larger area than that exhibited by a connected component containing the current seed point; and marking remaining portions of the region intersecting the current image plane, not removed from consideration, as seen areas.
Abstract:
A system and method for endoscopic path planning is provided. The method comprises: identifying a target in a lung, wherein the target is located in a peripheral airway of the lung; generating an endoscopic path to the target, wherein a peripheral artery is used as a surrogate for the peripheral airway; and viewing the endoscopic path.
Abstract:
A combination radiography and fluoroscopy system includes in one embodiment a radiography radiation generator and radiography radiation receiver, a fluoroscopy radiation generator and fluoroscopy radiation receiver, and a single computer system connected to receive signals from the radiography radiation receiver and fluoroscopy radiation receiver. The single computer system includes signal processing paths for the radiography signal and for the fluoroscopy signal wherein some processes or modules are common between the paths and some are path specific. The path specific processes are preferably connected in parallel. Common controls and a common interface are provided to the monitor connected to the computer system. An alternative uses a single radiation receiver for both radiography and fluoroscopy, along with the single computer system Another alternative provides for separate computers for signal processing of the radiography and fluoroscopy signals, the two computers running substantially identical signal processing programs.