Abstract:
The present invention provides a molten sodium secondary cell. In some cases, the secondary cell includes a sodium metal negative electrode, a positive electrode compartment that includes a positive electrode disposed in a molten positive electrolyte comprising Na-FSA (sodium-bis(fluorosulonyl)amide), and a sodium ion conductive electrolyte membrane that separates the negative electrode from the positive electrolyte. One disclosed example of electrolyte membrane material includes, without limitation, a NaSICON-type membrane. Non-limiting examples of the positive electrode include Ni, Zn, Cu, or Fe. The cell is functional at an operating temperature between about 100° C. and about 150° C., and preferably between about 110° C. and about 130° C.
Abstract:
The present invention provides an electrochemical cell that includes an anolyte compartment housing an anode electrode; a catholyte compartment housing a cathode electrode; and a solid alkali ion conductive electrolyte membrane separating the anolyte compartment from the cathode compartment. In some cases, the electrolyte membrane is selected from a sodium ion conductive electrolyte membrane and a lithium ion conductive membrane. In some cases, the at least one of anode or the cathode includes an alkali metal intercalation material.
Abstract:
A method that produces coupled radical products. The method involves obtaining a sodium salt of a sulfonic acid (R—SO3—Na). The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the sulfonic acid desulfoxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
Abstract:
The present invention provides a secondary cell having a negative electrode compartment and a positive electrode compartment, which are separated by an alkali ion conductive electrolyte membrane. An alkali metal negative electrode disposed in the negative electrode compartment oxidizes to release alkali ions as the cell discharges and reduces the alkali ions to alkali metal during recharge. The positive electrode compartment includes a positive electrode contacting a positive electrode solution that includes an alkali metal compound and a metal halide. The alkali metal compound can be selected from an alkali halide and an alkali pseudo-halide. During discharge, the metal ion reduces to form metal plating on the positive electrode. As the cell charges, the metal plating oxidizes to strip the metal plating to form metal halide or pseudo halide or corresponding metal complex.
Abstract:
A process of producing metal that includes adding a quantity of a alkoxide (M(OR)x) or another metal salt to a cathode compartment of an electrolytic cell and electrolyzing the cell. This electrolyzing causes a quantity of alkali metal ions to migrate into the cathode compartment and react with the metal alkoxide, thereby producing metal and an alkali metal alkoxide. In some embodiments, the alkali metal is sodium such that the sodium ions will pass through a sodium ion selective membrane, such as a NaSICON membrane, into the cathode compartment.