摘要:
The present invention provides an electrochemical cell having an negative electrode compartment and a positive electrode compartment. A solid alkali ion conductive electrolyte membrane is positioned between the negative electrode compartment and the positive electrode compartment. A catholyte solution in the positive electrode compartment includes a halide ion or pseudohalide ion concentration greater than 3M, which provides degradation protection to the alkali ion conductive electrolyte membrane. The halide ion or pseudohalide ion is selected from chloride, bromide, iodide, azide, thiocyanate, and cyanide. In some embodiments, the electrochemical cell is a molten sodium rechargeable cell which functions at an operating temperature between about 100° C. and about 150° C.
摘要:
The present invention provides a method for providing electrical potential from a solid-state sodium-based secondary cell (or rechargeable battery). A secondary cell is provided that includes a solid sodium metal negative electrode that is disposed in a non-aqueous negative electrolyte solution that includes an ionic liquid. Additionally, the cell comprises a positive electrode that is disposed in a positive electrolyte solution. In order to separate the negative electrode and the negative electrolyte solution from the positive electrolyte solution, the cell includes a sodium ion conductive electrolyte membrane. The cell is maintained and operated at a temperature below the melting point of the negative electrode and is connected to an external circuit.
摘要:
The present invention provides a secondary cell having a negative electrode compartment and a positive electrode compartment, which are separated by an alkali ion conductive electrolyte membrane. An alkali metal negative electrode disposed in the negative electrode compartment oxidizes to release alkali ions as the cell discharges and reduces the alkali ions to alkali metal during recharge. The positive electrode compartment includes a positive electrode contacting a positive electrode solution that includes an alkali metal compound and a metal halide. The alkali metal compound can be selected from an alkali halide and an alkali pseudo-halide. During discharge, the metal ion reduces to form metal plating on the positive electrode. As the cell charges, the metal plating oxidizes to strip the metal plating to form metal halide or pseudo halide or corresponding metal complex.
摘要:
The present invention provides a method for providing electrical potential from a solid-state sodium-based secondary cell (or rechargeable battery). A secondary cell is provided that includes a solid sodium metal negative electrode that is disposed in a non-aqueous negative electrolyte solution that includes an ionic liquid. Additionally, the cell comprises a positive electrode that is disposed in a positive electrolyte solution. In order to separate the negative electrode and the negative electrolyte solution from the positive electrolyte solution, the cell includes a sodium ion conductive electrolyte membrane. The cell is maintained and operated at a temperature below the melting point of the negative electrode and is connected to an external circuit.
摘要:
The present invention provides an electrochemical cell having an negative electrode compartment and a positive electrode compartment. A solid alkali ion conductive electrolyte membrane is positioned between the negative electrode compartment and the positive electrode compartment. A catholyte solution in the positive electrode compartment includes a halide ion or pseudohalide ion concentration greater than 3M, which provides degradation protection to the alkali ion conductive electrolyte membrane. The halide ion or pseudohalide ion is selected from chloride, bromide, iodide, azide, thiocyanate, and cyanide. In some embodiments, the electrochemical cell is a molten sodium rechargeable cell which functions at an operating temperature between about 100° C. and about 150° C.
摘要:
An animal litter composition that includes geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. This geopolymerization reaction may occur within a pelletizer. After the geopolymerized ash is formed, it may be dried and sieved to a desired size. These geopolymerized ash particulates may be used to make a non-clumping or clumping animal litter or other absorbing material. Aluminum sulfate, clinoptilolite, silica gel, sodium alginate and mineral oil may be added as additional ingredients.