摘要:
A reformer is disclosed in one embodiment of the invention as including a channel to convey a preheated plurality of reactants containing both a feedstock fuel and an oxidant. A plasma generator is provided to apply an electrical potential to the reactants sufficient to ionize one or more of the reactants. These ionized reactants are then conveyed to a reaction zone where they are chemically transformed into synthesis gas containing a mixture of hydrogen and carbon monoxide. A heat transfer mechanism is used to transfer heat from an external heat source to the reformer to provide the heat of reformation.
摘要:
A method for removing alkali metal from a hydrocarbon feedstock comprising alkali metal, non-alkali metal and sulfur. The method includes separating out at least a portion of any alkali metal sulfide and a portion of any non-alkali metal from the hydrocarbon feedstock. Hydrogen sulfide can be added to the remaining hydrocarbon feedstock to form alkali hydrosulfide from any alkali metal remaining in the hydrocarbon feedstock. The alkali hydrosulfide is then separated from the hydrocarbon feedstock. Alkali metal may be removed from the alkali metal sulfide separated out from the hydrocarbon feedstock. Alkali hydrosulfide may be treated to form alkali metal sulfide, and alkali metal may also be removed from the formed alkali metal sulfide.
摘要:
Hydrocarbons may be formed from six carbon sugars. This process involves obtaining a quantity of a hexose sugar. The hexose sugar may be derived from biomass. The hexose sugar is reacted to form an alkali metal levulinate, an alkali metal valerate, an alkali metal 5-hydroxy pentanoate, or an alkali metal 5-alkoxy pentanoate. An anolyte is then prepared for use in a electrolytic cell. The anolyte contains the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate. The anolyte is then decarboxylated. This decarboxylating operates to decarboxylate the alkali metal levulinate, the alkali metal valerate, the alkali metal 5-hydroxy pentanoate, or the alkali metal 5-alkoxy pentanoate to form radicals, wherein the radicals react to form a hydrocarbon fuel compound.
摘要:
Methods, equipment, and reagents for preparing organic compounds using custom electrolytes based on different ionic liquids in electrolytic decarboxylation reactions are disclosed.
摘要:
The present invention provides an electrochemical cell having an negative electrode compartment and a positive electrode compartment. A solid alkali ion conductive electrolyte membrane is positioned between the negative electrode compartment and the positive electrode compartment. A catholyte solution in the positive electrode compartment includes a halide ion or pseudohalide ion concentration greater than 3M, which provides degradation protection to the alkali ion conductive electrolyte membrane. The halide ion or pseudohalide ion is selected from chloride, bromide, iodide, azide, thiocyanate, and cyanide. In some embodiments, the electrochemical cell is a molten sodium rechargeable cell which functions at an operating temperature between about 100° C. and about 150° C.
摘要:
An intermediate temperature sodium-halogen secondary cell that includes a negative electrode compartment housing a negative, molten sodium-based electrode and a positive electrode compartment housing a current collector disposed in a highly conductive molten positive electrolyte. A sodium halide (NaX) positive electrode is disposed in a molten positive electrolyte comprising one or more AlX3 salts, wherein X may be the same or different halogen selected from Cl, Br, and I, wherein the ratio of NaX to AlX3 is greater than or equal to one. A sodium ion conductive solid electrolyte membrane separates the molten sodium negative electrode from the molten positive electrolyte. The secondary cell operates at a temperature in the range from about 80° C. to 210° C.
摘要:
A system treats off gas from a waste incinerator to decrease potentially negative aspects of the off gas to the environment. The system includes a waste incinerator and a plasma oxidizer. The waste incinerator includes an incineration chamber to contain a waste material during at least a portion of an incineration process of the waste material. The waste incinerator also includes an exhaust outlet to exhaust an off gas from the incineration process of the waste material. The plasma oxidizer is coupled to the waste incinerator to receive and oxidize the off gas from the exhaust outlet of the waste incinerator. The plasma oxidizer includes a non-thermal gliding electric arc oxidation system to generate the plasma.
摘要:
An apparatus includes a heat transfer structure configured to be disposed at least partially within an enclosure of a fixed bed reactor and operable to transfer heat from a heat source to a heat sink. The heat transfer structure includes a plurality of fins each fin including a first end and a second end, the first end contacting an inner surface of the enclosure of the fixed bed reactor, the second end at least partially enclosed within the enclosure of the fixed bed reactor. A path of at least one of the plurality of fins comprises the shortest possible length between the first end of the at least one of the plurality of fins and the second end of the at least one of the plurality of fins.
摘要:
A multi-compartment electrolysis cell includes an anodic compartment, a cathodic compartment, and a solid alkali ion transporting membrane (such as a NaSICON membrane). An anolyte is added to the anodic compartment. The anolyte comprises an alkali salt of a carboxylic acid, a first solvent, and a second solvent. The alkali salt of the carboxylic acid is partitioned into the first solvent. The anolyte is then electrolyzed to produce a carboxylic acid, wherein the produced carboxylic acid is partitioned into the second solvent. The second solvent may then be separated from the first solvent and the produced carboxylic acid may be recovered from the second solvent. The first solvent may be water and the second solvent may be an organic solvent.
摘要:
An apparatus and method for enhancing the yield and purity of hydrogen when reforming hydrocarbons is disclosed in one embodiment of the invention as including receiving a hydrocarbon feedstock fuel (e.g., methane, vaporized methanol, natural gas, vaporized diesel, etc.) and steam at a reaction zone and reacting the hydrocarbon feedstock fuel and steam in the presence of a catalyst to produce hydrogen gas. The hydrogen gas is selectively removed from the reaction zone while the reaction is occurring by selectively diffusing the hydrogen gas through a porous ceramic membrane. The selective removal of hydrogen changes the equilibrium of the reaction and increases the amount of hydrogen that is extracted from the hydrocarbon feedstock fuel.