Abstract:
Techniques are provided for implementing a zone-based firewall policy. At a virtual network device, information is defined and stored that represents a security management zone for a virtual firewall policy comprising one or more common attributes of applications associated with the security zone. Information representing a firewall rule for the security zone is defined and comprises first conditions for matching common attributes of applications associated with the security zone and an action to be performed on application traffic. Parameters associated with the application traffic are received that are associated with properly provisioned virtual machines. A determination is made whether the application traffic parameters satisfy the conditions of the firewall rule and in response to determining that the conditions are satisfied, the action is performed.
Abstract:
A method is provided in one example embodiment and includes receiving at a network element a flow offload decision for a first service node that includes a portion of a service chain for processing a flow; recording the flow offload decision against the first service node at the network element; and propagating the flow offload decision backward on a service path to which the flow belongs if the first service node is hosted at the network element. Embodiments may also include propagating the flow offload decision backward on a service path to which the flow belongs if the flow offload decision is a propagated flow offload decision and the network element hosts a second service node that immediately precedes the service node on behalf of which the propagated flow offload decision was received and a flow offload decision has already been received by the network element from the second service node.
Abstract:
An example method for service insertion in a network environment is provided in one example and includes configuring a service node by tagging one or more interface ports of a virtual switch function to which the service node is connected with one or more policy identifiers. When data traffic associated with a policy identifier is received on a virtual overlay path the virtual switch function may then terminate the virtual overlay path and direct raw data traffic to the interface port of the service node that is tagged to the policy identifier associated with the data traffic.
Abstract:
An example method for service node originated service chains in a network environment is provided and includes receiving a packet at a service node in a network environment that includes a plurality of service nodes and a central classifier, analyzing the packet for a service chain modification or a service chain initiation, classifying the packet at the service node to a new service chain based on the analysis, initiating the new service chain at the service node if the analysis indicates service chain initiation, and modifying an existing service chain for the packet to the new service chain if the analysis indicates service chain modification. In specific embodiments, the analysis includes applying classification logic specific to the service node. Some embodiments, service node attributes and order of service nodes in substantially all service chains configured in the network may be received from a central controller.
Abstract:
An example method for distributed service chaining in a network environment is provided and includes receiving a packet belonging to a service chain in a distributed virtual switch (DVS) network environment, wherein the packet includes a network service header (NSH) indicating a service path identifier identifying the service chain and a location of the packet on the service chain, evaluating a service forwarding table to determine a next service node based on the service path identifier and the location, with a plurality of different forwarding tables distributed across the DVS at a corresponding plurality of virtual Ethernet Modules (VEMs) associated with respective service nodes in the service chain, and forwarding the packet to the next service node, with substantially all services in the service chain provided sequentially to the packet in a single service loop on a service overlay.
Abstract:
An example method for service insertion in a network environment is provided in one example and includes configuring a service node by tagging one or more interface ports of a virtual switch function to which the service node is connected with one or more policy identifiers. When data traffic associated with a policy identifier is received on a virtual overlay path the virtual switch function may then terminate the virtual overlay path and direct raw data traffic to the interface port of the service node that is tagged to the policy identifier associated with the data traffic.
Abstract:
An example method for workload based service chain insertion in a network environment is provided and includes partitioning a service-path into fragments at a service controller, where the service-path comprises an ordered sequence of services to be provided to a packet associated with a workload in a network. The method also includes determining a location of service nodes providing the services; and provisioning the fragments at interfaces at a distributed virtual switch. The method could further include generating a plurality of service insertion points corresponding to the fragments at a service dispatcher. The service dispatcher can include a plurality of data plane components, and the service insertion points are generated at the data plane components.
Abstract:
An example method for a programmable infrastructure gateway for enabling hybrid cloud services in a network environment is provided and includes receiving an instruction from a hybrid cloud application executing in a private cloud, interpreting the instruction according to a hybrid cloud application programming interface, and executing the interpreted instruction in a public cloud using a cloud adapter. The method is generally executed in the infrastructure gateway including a programmable integration framework allowing generation of various cloud adapters using a cloud adapter software development kit, the cloud adapter being generated and programmed to be compatible with a specific public cloud platform of the public cloud. In specific embodiments, identical copies of the infrastructure gateway can be provided to different cloud service providers who manage disparate public cloud platforms; each copy of the infrastructure gateway can be programmed differently to generate corresponding cloud adapters compatible with the respective public cloud platforms.
Abstract:
Many hybrid cloud topologies require virtual machines in a public cloud to use a router in a private cloud, even when the virtual machine is transmitting to another virtual machine in the public cloud. Routing data through an enterprise router on the private cloud via the internet is generally inefficient. This problem can be overcome by placing a router within the public cloud that mirrors much of the routing functionality of the enterprise router. A switch configured to intercept address resolution protocol (ARP) request for the enterprise router's address and fabricate a response using the MAC address of the router in the public cloud.
Abstract:
Many hybrid cloud topologies require virtual machines in a public cloud to use a router in a private cloud, even when the virtual machine is transmitting to another virtual machine in the public cloud. Routing data through an enterprise router on the private cloud via the internet is generally inefficient. This problem can be overcome by placing a router within the public cloud that mirrors much of the routing functionality of the enterprise router. A switch configured to intercept address resolution protocol (ARP) request for the enterprise router's address and fabricate a response using the MAC address of the router in the public cloud.