Abstract:
An illustrative approach to managing snapshots streamlines how and when snapshots are generated in a storage management system, such that fewer snapshots may be generated without diminishing the scope of data protection. A novel unified-snapshot storage policy may govern snapshots for any number of subclients. A unified-snapshot job based on the unified-snapshot storage policy enables the illustrative storage management system to automatically discover relevant components and generate at most one snapshot per target logical unit number (“LUN”) in a storage array. Each snapshot may comprise the data of any number of subclients and/or clients in the storage management system. Accordingly, one unified-snapshot job may yield a minimum but sufficient number of snapshots comprising data of all subclients associated with the governing unified-snapshot storage policy. An enhanced storage manager may manage the unified-snapshot jobs. One or more enhanced media agents and/or data agents may participate in the unified-snapshot jobs and in subsequent cataloguing of the snapshots.
Abstract:
A scalable approach is disclosed for processing auxiliary-copy jobs in a storage management system by using distributed media agent resources instead of a centralized storage manager. Enhanced media agents coordinate and control auxiliary-copy jobs and tap the storage manager to reserve data streams and provide job-specific metadata on demand. An enhanced storage manager may initially select a media agent as “coordinator” to coordinate auxiliary-copy jobs with any number of other media agents, which act as “controllers.” A coordinator media agent is generally responsible for obtaining data stream reservation information from the storage manager and assigning auxiliary-copy jobs to respective controller media agents, based on the components involved in the respective reserved data streams.
Abstract:
An illustrative approach to managing snapshots streamlines how and when snapshots are generated in a storage management system, such that fewer snapshots may be generated without diminishing the scope of data protection. A novel unified-snapshot storage policy may govern snapshots for any number of subclients. A unified-snapshot job based on the unified-snapshot storage policy enables the illustrative storage management system to automatically discover relevant components and generate at most one snapshot per target logical unit number (“LUN”) in a storage array. Each snapshot may comprise the data of any number of subclients and/or clients in the storage management system. Accordingly, one unified-snapshot job may yield a minimum but sufficient number of snapshots comprising data of all subclients associated with the governing unified-snapshot storage policy. An enhanced storage manager may manage the unified-snapshot jobs. One or more enhanced media agents and/or data agents may participate in the unified-snapshot jobs and in subsequent cataloguing of the snapshots.
Abstract:
Systems and methods are provided herein for automatically configuring newly installed secondary storage computing devices and managing secondary storage computing devices when one or more become unavailable. For example, a storage manager can then detect the computing resources available to the newly installed secondary storage computing device, assign a role to the newly installed secondary storage computing device based on the detected computing resources, configure the newly installed secondary storage computing device with deduplication and storage policies used by the other secondary storage computing devices, re-partition secondary storage devices to allocate memory for the newly installed secondary storage computing device, and instruct other secondary storage computing devices to replicate their managed data such that the newly installed secondary storage computing device has access to the replicated data.
Abstract:
According to certain aspects, an information management system may identify a set of secondary storage computing devices residing in a secondary storage subsystem, wherein each of at least two storage devices that each store a separate copy of a first file is associated with at least one of the secondary storage computing devices in the set. The system may also select a subset of the set of secondary storage computing devices based on stored selection criteria. The system can, using a first secondary storage computing device, initiate a restore operation of a first copy of the first file stored in a first storage device associated with at least the first secondary storage computing device and, using a second secondary storage computing device, initiate a restore operation of a second copy of the first file stored in a second storage device associated with at least the second secondary storage computing device.
Abstract:
According to certain aspects, an information management cell with failover management capability can include secondary storage computing devices configured to conduct primary data from a primary storage device(s) to a secondary storage device(s) during secondary copy operations, at the direction of a remote storage manager, wherein a first secondary storage computing device implements a failover storage manager configured to, in the event of a loss of connectivity between the cell and the remote storage manager: access a stored storage policy; initiate a first secondary copy operation according to the storage policy in which the first secondary storage computing device is involved in the creation of a first secondary copy on the secondary storage device(s); and initiate a second secondary copy operation according to the storage policy in which a second secondary storage computing device is involved in the creation of a second secondary copy on the secondary storage device(s).
Abstract:
According to certain aspects, an information management cell can include at least one secondary storage computing device configured to conduct primary data generated by at least one client computing device to a secondary storage device(s) as part of secondary copy operations, wherein the secondary storage computing device normally operates to conduct primary data to the secondary storage device(s) for storage as a secondary copy in a first secondary copy file format, at the direction of a main storage manager; and can include a failover storage manager configured to activate in response to loss of connectivity between the cell and the main storage manager, and instruct a secondary copy application to perform a secondary copy operation in which the primary data generated by the at least one client computing device is stored as a secondary copy in a second secondary copy file format different than the first secondary copy file format.
Abstract:
A disclosed framework enables virtually any aggressive Recovery Point Objective (RPO) to be enforced for a production database, without limitation on type of database management system (DBMS) or size of the production database. The framework overcomes technological barriers of the prior art, such as bottlenecks presented by a storage manager computer that traditionally managed database backups. To avoid the bottlenecks, an illustrative data storage management system does not engage the storage manager computer in storage operations that could impact the database RPO. Certain components are added and enhanced to autonomously capture database transaction logs, which are stored securely and persistently away from the DBMS. In a separate and less frequent operation, and with involvement of the storage manager computer, the illustrative system generates secondary copies in their final form. Meanwhile, temporary backup files can be used in restore operations without first being converted into secondary copies.
Abstract:
Data storage operations, including content-indexing, containerized deduplication, and policy-driven storage, are performed within a cloud environment. The systems support a variety of clients and cloud storage sites that may connect to the system in a cloud environment that requires data transfer over wide area networks, such as the Internet, which may have appreciable latency and/or packet loss, using various network protocols, including HTTP and FTP. Methods are disclosed for content indexing data stored within a cloud environment to facilitate later searching, including collaborative searching. Methods are also disclosed for performing containerized deduplication to reduce the strain on a system namespace, effectuate cost savings, etc. Methods are disclosed for identifying suitable storage locations, including suitable cloud storage sites, for data files subject to a storage policy. Further, systems and methods for providing a cloud gateway and a scalable data object store within a cloud environment are disclosed, along with other features.
Abstract:
An information management system implements a method for determining whether to initiate a failover of a storage manager in the system. Nodes in the system may be assigned as monitoring nodes configured to communicate with a storage manager. Furthermore, each monitoring node may be configured to transmit a status inquiry message to each other monitoring node, and each monitoring node may receive a status inquiry message from each other monitoring node. Each monitoring node may also generate a session message comprising status information, and a plurality of failover nodes may receive the generated session messages. A failover node may then determine whether a failover condition has occurred by applying a plurality of failover rules to the status information of the transmitted session message. Where the failover node determines that a failover condition has occurred, the failover node may activate an offline storage manager to replace the active storage manager.