摘要:
A method for wirelessly transmitting data and control information using a plurality of transmission layers includes determining a number of bits in one or more user data codewords to be transmitted during a subframe and calculating, for each of M control signals to be transmitted during the subframe, a value (Q′), based at least in part, on the number of bits in the one or more user data codewords, and an estimated number of user data vector symbols onto which the one or more user data codewords will be mapped. The estimate of the number of user data vector symbols for a particular one of the M control signals depends, at least in part, on a number of control vector symbols to be allocated to one or more others of the M control signals. The method also includes determining a number of control vector symbols onto which to map each of the M control signals based on a respective value Q′ calculated for that control signal, mapping the control signals for that control signal, and transmitting the control vector symbols.
摘要:
A method for wirelessly transmitting user data and at least a first type of control information using a plurality of transmission layers including encoding bits of a first type of control information to form one or more control codewords and encoding bits of user data to form one or more user data codewords. The method also includes generating a plurality of vector symbols based on the control codewords and the user data codewords. Each vector symbol includes a plurality of modulation symbols that are each associated with a transmission layer over which the associated modulation symbol will be transmitted. Generating the plurality of vector symbols includes interleaving bits of the one or more control codewords and bits of the one or more user data codewords so that the first type of control information is carried in modulation symbols associated with the same transmission layers in all the vector symbols transmitted during the subframe that carry the first type of control information. The method also includes transmitting the plurality of vector symbols to a receiver over a plurality of transmission layers.
摘要:
A method for wirelessly transmitting data and control information using a plurality of transmission layers includes determining a number of bits in one or more user data codewords to be transmitted during a subframe and calculating a number of control vector symbols to allocate to control information during the subframe. The number of control vector symbols is calculated based at least in part on the number of bits in the one or more user data codewords to be transmitted during the subframe and an estimate of the number of vector symbols onto which the one or more user data codewords will be mapped. The estimate of the number of vector symbols depends, at least in part, on the number of control vector symbols to be allocated to control information. The method also includes mapping one or more control codewords to the calculated number of control vector symbols and transmitting vector symbols carrying the one or more user data codewords and the one or more control codewords over the plurality of transmission layers during the subframe.
摘要:
One aspect of the teachings herein relates to signaling codebook restrictions, to restrict the precoder recommendations being fed back from a remote transceiver, so that precoder selections made by the remote receiver are restricted to permitted subsets of overall precoders within a defined set of overall precoders, or to permitted subsets within larger sets of conversion precoders and tuning precoders, for the case where the overall precoders are represented in factorized form by conversion and tuning precoders. As a non-limiting example, these teachings advantageously provide for precoder restrictions in LTE or LTE-Advanced networks, where ongoing development targets the use of larger, richer sets of precoders, and where the disclosed mechanisms for determining, signaling, and responding to subset restrictions provide significant operational advantages.
摘要:
A precoder for an effective channel linking a wireless receiver to a wireless transmitter includes a precoder report and a precoder update report, the effective channel including a propagation channel, transmit filters and receive filters. A structured frequency-selectivity of the effective channel is determined, the structured frequency-selectivity being induced by one or more long term and/or persistent parameters of the effective channel. The precoder update report is generated based on the structured frequency-selectivity. The precoder update report includes frequency-dependent phase compensation which accounts for the structured frequency-selectivity. The precoder report is generated for the effective channel based on channel state information determined for the effective channel. The precoder report and the precoder update report are transmitted to the wireless transmitter. The transmitter determines a transmission operation based on the precoder report and the precoder update report, and transmits data to the wireless receiver in accordance with the transmission operation.
摘要:
Example embodiments presented herein are directed towards an eNodeB, and method therein, for generating downlink communications in a multiple antenna system. The method comprises transmitting, to a number of user equipments, a plurality of reference signals, where each signal is beamformed in a distinct direction within at least one correlated domain (e.g., elevation and/or azimuth). The eNodeB receives at least one CSI report from a specific user equipment and determines a primary reference signal based on, for example, the at least one CSI report. The eNodeB may thereafter generate downlink communication signals for antenna element(s) and/or subelements of the multiple antenna system. The downlink communication signals are beamformed into a transmitting direction that aligns most closely with a beamforming direction of the at least one primary reference signal, as compared to any other beamforming direction of the reference signals.
摘要:
It is presented a user equipment comprising: a processor; and an instruction memory. The instruction memory stores instructions that, when executed, causes the user equipment to: receive at least one command from a network node; obtain at least a first measurement of channel state information and a second measurement of channel state information as a response to the at least one command; determine whether an interference corresponding to the second measurement of channel state information occurs during a data reception phase; and decode received signals, when an interference corresponding to the second measurement of channel state information occurs, based on the second measurement of channel state information.
摘要:
In a heterogeneous cell deployment a mobile terminal may need to receive control data transmissions from a macro node at the same time as a pico node is transmitting user data for the mobile terminal, using the same frequency or set of frequencies. This can result in a problematic interference situation. According to several embodiments of the present invention, at least one of two general approaches is used to mitigate the interference situation described above. In a first approach, the pico node's transmission power is reduced in some time intervals, thereby reducing the interference to a level where reception from the macro node is possible. In a second approach, which may be combined with the first approach in some cases, the data transmitted from the macro node is provided by the pico node, either alone or in combination with the macro node.
摘要:
Example embodiments presented herein are directed towards an eNodeB, and method therein, for generating downlink communications in a multiple antenna system. The method comprises transmitting, to a number of user equipments, a plurality of reference signals, where each signal is beamformed in a distinct direction within at least one correlated domain (e.g., elevation and/or azimuth). The eNodeB receives at least one CSI report from a specific user equipment and determines a primary reference signal based on, for example, the at least one CSI report. The eNodeB may thereafter generate downlink communication signals for antenna element(s) and/or subelements of the multiple antenna system. The downlink communication signals are beamformed into a transmitting direction that aligns most closely with a beamforming direction of the at least one primary reference signal, as compared to any other beamforming direction of the reference signals.
摘要:
Frequency-selective phase shifts are applied to signals transmitted from multiple transmission points involved in a coordinated (joint) transmission to a given UE. An eNodeB or other network node controlling the joint transmission artificially induces frequency selectivity between signals received by the UE in joint transmission from different transmission points, so as to ensure an even balance between constructive and destructive combination over frequency. By applying frequency-selective phase shifts (e.g., pseudo-random phase shifts) to the different transmission points that perform joint transmission, the signals from the different transmission points are forced to combine at the UE in a non-coherent manner. As a result, uncertainty in how the signals combine is drastically reduced, since it can be expected that the signals will always combine incoherently. The reduced uncertainty translates to reduced back-off offset in the link adaptation, and thus in an increased throughput.