摘要:
A multi-carrier linear equalization receiver, e.g., a RAKE receiver or chip equalization receiver, is described herein. The multi-carrier receiver distributes processing delays among a plurality of received carriers based on a dispersion determined for each carrier. The receiver initially allocates a minimum number of processing delays sufficient for light dispersion to each carrier. For the dispersive carriers, the receiver allocates one or more additional processing delays. In one embodiment, the additional processing delays are allocated to the dispersive carriers based on SIR.
摘要:
The placement of processing delays may be adjusted to facilitate signal reception. In an example embodiment, a composite signal having multiple signal images corresponding to multiple reception delays is received. A root-mean-square (RMS) delay spread is ascertained for the multiple reception delays that correspond to the multiple signal images of the composite signal. A set of temporal points is produced responsive to the RMS delay spread. Multiple processing delays are placed based on the set of temporal points. In different example implementations, the set of temporal points (e.g., of a grid) may be produced by adjusting a spacing between temporal points, by adjusting a total number of temporal points in the set, or by changing a center location of the set. The spacing and number of points may be adjusted responsive to the RMS delay spread. The center location may be adjusted responsive to at least one calculated delay.
摘要:
A frequency domain representation of a whitening filter is made to depend on essentially one unknown, namely, a scaling factor that is based on an estimated ratio of total base station power to the power spectral density (PSD) of inter-cell interference plus noise. In turn, that scaling factor can be computed based on the modeling terms used in a parametric model of the impairment correlations for a received communication signal. Preferably, the model comprises an interference impairment term scaled by a first model fitting parameter, and a noise impairment term scaled by a second model fitting parameter. Further, the scaling factor can be computed by directly estimating total base station transmit power and the PSD of inter-cell interference plus noise. In any case, the whitening filter can be used in whitening a received communication signal in conjunction with channel equalization processing or RAKE receiver processing, for example.
摘要:
Signal quality estimation and demodulation are tailored to the received signal quality. According to one embodiment, a received signal is processed by determining a first set of combining weights based on a first impairment covariance estimate derived assuming a low signal quality environment. A second set of combining weights is determined based on a second impairment covariance estimate derived assuming a high signal quality environment. A metric is determined corresponding to the difference between symbol estimates derived from the second set of combining weights and hard symbol decisions. The received signal is demodulated based on the second set of combining weights if the metric satisfies a threshold indicating high signal quality and otherwise based on the first set of combining weights.
摘要:
Methods and apparatus are disclosed for calculating a channel response for use in received signal processing. In an exemplary embodiment, a method comprises calculating a channel response correlation matrix based on measured channel responses derived from pilot symbols in a received signal and forming a traffic data correlation matrix based on measurements of traffic symbols in the received signal. The traffic data correlation matrix, the channel response correlation matrix, and the measured channel responses are used in an minimum mean-squared error (MMSE) estimation process to calculate the channel response estimates. In one or more embodiments, the calculated channel response estimates comprise estimates of net channel response corresponding to signal processing delays in a G-RAKE receiver. An exemplary receiver circuit comprises a baseband processor configured to calculate channel response estimates according to one or more of the disclosed methods.
摘要:
The sensor network described herein uses a distributed sigma-delta converter, where each of a plurality of sensor nodes includes a sigma-delta modulator communicatively coupled to a remotely located sigma-delta processor in a control hub. Each sensor node generates a serial bit stream representative of a sensor output signal. The control hub includes a plurality of signal processors, each of which receive and digitally process the serial bit stream wirelessly transmitted by a corresponding sensor node. A controller in the control hub analyzes the digital output from each signal processor to determine one or more characteristics of the sensor network.
摘要:
The sensor network described herein uses a distributed sigma-delta converter, where each of a plurality of sensor nodes includes a sigma-delta modulator communicatively coupled to a remotely located sigma-delta processor in a control hub. Each sensor node generates a serial bit stream representative of a sensor output signal. The control hub includes a plurality of signal processors, each of which receive and digitally process the serial bit stream wirelessly transmitted by a corresponding sensor node. A controller in the control hub analyzes the digital output from each signal processor to determine one or more characteristics of the sensor network.
摘要:
Channel estimation and/or equalization processing is performed in a wireless receiver in two stages. The first stage involves pre-filtering in the frequency domain to compact a grid-based representation of the net channel. The second stage involves implementing reduced-complexity time domain channel estimation and/or equalization. According to one embodiment, a received signal transmitted over a net channel is processed by pre-filtering the received signal in the frequency domain. The frequency domain pre-filtering compacts an N-tap effective grid-based representation of the net channel into a K-tap compacted grid-based representation of the net channel where K
摘要:
A signal-to-interference estimate is generated using unknown data symbols in place of or in addition to pilot symbols. Data received over a data channel (traffic channel or control channel) are collected. The data symbols are then used to compute an observation metric based on deviations of the data symbols from a predetermined set of possible data symbols, wherein one of the data symbols and symbol constellation is normalized. A data channel signal-to-interference ratio is then computed based on the observation metric.
摘要:
A method of operating a User Equipment (UE) for generating a second scrambling code group where the UE is configured for receiving downlink transmission from a Universal Mobile Telecommunications System Terrestrial Radio Access Network (UTRAN) on a set of at least two downlink carriers including an anchor carrier and at least a first secondary carrier includes: determining a first scrambling code group associated with a first cell on the anchor carrier and deriving the second scrambling code group associated with a second cell on said first secondary carrier using a predefined rule defining the relation between the second scrambling code group and the first scrambling code group.