Abstract:
Vehicles that use electric power as a motive force may use accurate measurements of battery power for numerous purposes, e.g., battery characteristics, state of charge of the battery, travel distance remaining for the vehicle and the like. A traction battery measurement should be taken when the battery is fully relaxed, i.e., the battery is neither being charged nor providing power and a time period thereafter when the battery chemistry reaches a steady state. A controller or methods may determine if the battery is relaxed and if the battery is not relaxed, delay charging or discharging of the traction battery to allow accurate battery capacity determination. The controller may control a battery charger to ensure the battery is fully relaxed before sensing battery characteristics.
Abstract:
Systems and methods for operating a battery pack supplying power to propel a vehicle are disclosed. One example method comprises, determining a difference between an estimated battery pack temperature and a sensed battery pack temperature as a basis for adjusting battery pack output power. The method also includes adjusting a speed of a cooling fan based on the difference between estimated battery pack temperature and sensed battery pack temperature.
Abstract:
A diagnostic system for a vehicle includes a traction battery including a plurality of cells, and a controller configured to indicate an overcurrent condition in response to battery current being greater than a value of an upper limit of a current sensor and a difference between a measured battery voltage and an estimated battery voltage, that is based on the value, being greater than a threshold.
Abstract:
A battery management system for a vehicle includes a controller programmed to apply a current pulse to reverse a current flow through a battery to reduce or remove cell polarization. After the current pulse, an open-circuit voltage is measured as the terminal voltage of the battery. The settling time for the terminal voltage to approach the open-circuit voltage is reduced after the current pulse. The magnitude of the current pulse is based on a battery state of charge, a battery temperature, and a current magnitude prior to the current pulse.
Abstract:
A diagnostic method for contact resistance failure includes estimating electrical contact surface resistance of at least one contactor, determining a faulted status of the at least one contactor and indicating the faulted status of the at least one contactor if the at least one contactor is in the faulted status.
Abstract:
Systems and methods for operating a battery pack supplying power to propel a vehicle are disclosed. One example method includes, increasing a battery pack state of charge window in response to a negative grade of a section of road a vehicle is traveling. The method also includes decreasing the battery pack state of charge window in response to the vehicle transitioning from traveling down a section of road having a negative grade to traveling down a section of road that has a positive or zero grade.
Abstract:
A method of detecting a leak in a battery pack according to an exemplary aspect of the present disclosure includes, among other things, calculating a predicted amount of thermal energy at a position, measuring an actual amount of thermal energy at the position, and comparing the predicted amount to the actual amount to identify if a battery pack is leaking.
Abstract:
A method of detecting a thermal event associated with a battery assembly of an electrified vehicle includes, among other things, obtaining a temperature reading from a sensor associated with an area of the battery assembly, assessing whether the sensor is flagged with a first identifier or a second identifier. The first identifier indicates that the temperature reading is reliable. The second identifier indicates that the temperature reading is unreliable. If the sensor is flagged with the first identifier, the method detects a thermal event associated with the battery assembly based on the temperature reading from the sensor.
Abstract:
An automotive controller may, responsive to a loss of data indicative of a capacity of a traction battery and during charge of the traction battery, prevent a voltage of the traction battery from exceeding a threshold defined by a minimum value among a set of estimated battery capacities. The set includes an estimated battery capacity associated with a mileage of the vehicle and an estimated battery capacity associated with a number of drive days of the vehicle.
Abstract:
Methods and system are described for recalibrating a charge storage capacity value of an electric energy storage device. In one example, the charge electric energy storage device may be a battery. The charge storage capacity value may be recalibrated via discharging and charging a battery via electric vehicle supply equipment.