Abstract:
The invention provides control systems and methodologies for controlling a process having one or more motorized pumps and associated motor drives, which provide for optimized process performance according to one or more performance criteria, such as efficiency, component life expectancy, safety, emissions, noise, vibration, operational cost, or the like. More particularly, the subject invention provides for employing machine diagnostic and/or prognostic information in connection with optimizing an overall business operation over a time horizon.
Abstract:
Adaptable self-powered sensor node and methods of operation providing real-time monitoring and management of node operation. The adaptable self-powered sensor node incorporates an adaptable generator and a radio transmitter to operate remotely without the need for power or communication wiring. Data analysis capabilities provide for maximizing information extracted from sensors and analysis and providing control or reporting information utilizing a strategy to minimize energy usage while reducing information entropy.
Abstract:
Crane control and anti-sway are facilitated utilizing a diagnostic component that includes a model component and a control component. The diagnostic component interfaces with an extrinsic data analysis component and a controller component. The diagnostic component receives operating condition information from the extrinsic data analysis component and performs predictive modeling, based on a current status and stored information. Further, the diagnostic component predicts the affect of the operating conditions on a crane and implements and/or recommends actions to mitigate the affect of the existing and/or predicted operating conditions. The diagnostic component further mitigates crane sway and/or induces crane sway to reduce container transit time. Intelligent agents are employed to provide trajectory planning and execution and/or to detect potential component failure.
Abstract:
The invention provides control systems and methodologies for controlling a process having computer-controlled equipment, which provide for optimized process performance according to one or more performance criteria, such as efficiency, component life expectancy, safety, emissions, noise, vibration, operational cost, or the like. More particularly, the subject invention provides for employing machine diagnostic and/or prognostic information in connection with optimizing an overall business operation over a time horizon.
Abstract:
The invention provides control systems and methodologies for controlling a process having computer-controlled equipment, which provide for optimized process performance according to one or more performance criteria, such as efficiency, component life expectancy, safety, emissions, noise, vibration, operational cost, or the like. More particularly, the subject invention provides for employing machine diagnostic and/or prognostic information in connection with optimizing an overall business operation over a time horizon.
Abstract:
A system and method relating to in situ monitoring, analysis, and control of a lubricating material within a lubrication filter assembly is provided. A filter-sensor integration comprises a lubrication filter assembly and at least one lubrication sensing assembly, wherein the lubrication sensing assembly comprising at least one sensor array, and the sensor array comprises of at least one sensor. The lubrication filter assembly comprises a housing which defines a chamber, wherein lubricating material enters the chamber through a filter material. The lubrication sensing assembly is embedded into the chamber of the lubrication filter assembly, and the lubrication sensing device is positioned relative to the filter material so that the at least one sensor of the sensor array senses in situ different parameters of the lubricating fluid, analyzes measured parameters to determine health of the system, and generates a control signal to protect machinery and processes.
Abstract:
An integrated control and diagnostics system for a controlled system (e.g., a motor) includes a diagnostics module and a controller coupled to the motor. To optimize operation, the diagnostics information signal is used to modify the control provided by the controller as required. Moreover, the output of the control module is coupled to the diagnostics module so that the health assessment made by the diagnostics module can be based at least in part on the output of the controller. The invention uses a model-based diagnostics approach that allows integration of control algorithms with diagnostics algorithms to intelligently trade off optimizing performance to avert or accommodate failures, and to meet performance requirements in a wide range of applications.
Abstract:
A system and method is provided for monitoring the operating condition of a pump by evaluating fault data encoded in the instantaneous current of the motor driving the pump. The data is converted to a frequency spectrum which is analyzed to create a fault signature having fault attributes relating to various fault conditions associated with the pump. The fault signature is then input to a neural network that operates in conjunction with a preprocessing and post processing module to perform decisions and output those decisions to a user interface. A stand alone module is also provided that includes an adaptive preprocessing module, a one-shot unsupervised neural network and a fuzzy based expert system to provide a decision making module that operates with limited human supervision.
Abstract:
An integrated control and diagnostics system for a controlled system (e.g., a motor) includes a diagnostics module and a controller coupled to the motor. To optimize operation, the diagnostics information signal is used to modify the control provided by the controller as required. Moreover, the output of the control module is coupled to the diagnostics module so that the health assessment made by the diagnostics module can be based at least in part on the output of the controller. The invention uses a model-based diagnostics approach that allows integration of control algorithms with diagnostics algorithms to intelligently trade off optimizing performance to avert or accommodate failures, and to meet performance requirements in a wide range of applications.
Abstract:
A multi-element fluid sensor system for determining the health state of a fluid. The sensor system includes at least two sensors for collecting data relating to a particular parameter (e.g., pH, temperature, conductivity, chemistry, viscosity) of the fluid. The at least two sensors may be integrated onto a semiconductor base so as to provide for a micro sensor for in situ monitoring of the fluid. The system also includes a data fusion processor operatively coupled to the at least two sensors. The data fusion processor processes the fluid data to at least compensate for information fragmentation attributed to using the at least two sensors. The data fusion processor may condense the data, combine the data, evaluate the data and interpret the data.